Abstract:
An electronic device may include a display. The display may be formed by an array of light-emitting diodes mounted to the surface of a substrate. The light-emitting diodes may be inorganic light-emitting diodes formed from separate crystalline semiconductor structures. An array of pixel control circuits may be used to control light emission from the light-emitting diodes. Each pixel control circuit may be used to supply drive signals to a respective set of the light-emitting diodes. The pixel control circuits may each have a silicon integrated circuit that includes transistors such as emission enable transistors and drive transistors for supplying the drive signals and may each have thin-film semiconducting oxide transistors that are coupled to the integrated circuit and that serve as switching transistors.
Abstract:
Systems and method for improving display quality of an electronic display. In one embodiment the electronic display includes a first display pixel that facilitates displaying a first image frame using first amplified image data and facilitates displaying a second image frame using second amplified image data; a second display pixel that facilitates displaying the first image frame using third amplified image data; a first amplifier that operates in a first operational mode to generate the first amplified image data based on image data corresponding with the first image frame and operates in a second operational mode to generate the second amplified image data based on image data corresponding with the second image frame; and a second amplifier that operates in the second operational mode to generate the third amplified image data based on the image data corresponding with the first image frame.
Abstract:
A touch screen display may include gate line driver circuitry coupled to a display pixel array. The display may be provided with intra-frame pausing (IFP) capabilities, where touch or other operations may be performed during one or more intra-frame blanking intervals. In one suitable arrangement, a gate driver circuit may include multiple gate line driver segments each of which is activated by a separate gate start pulse. Each gate start pulse may only be released at the end of an IFP interval. In another suitable arrangement, dummy gate driver units may be interposed among active gate driver units. Gate output signals may propagate through the dummy gate driver units during the IFP internal. In another suitable arrangement, each active gate driver unit may be provided with a buffer portion that protects at least some transistor in the gate driver unit from undesired stress.
Abstract:
An organic light-emitting diode display may have an array of pixels. Each pixel may have an organic light-emitting diode with an anode and cathode. The anodes may be formed from a patterned layer of metal. Thin-film transistor circuitry in the pixels may include transistors such as drive transistors and switching transistors. Data lines may supply data signals to the pixels and horizontal control lines may supply control signals to the gates of the transistors. A switching transistor may be coupled between a voltage initialization line and each anode. The voltage initialization lines and capacitor structures in the thin-film transistor circuitry may be formed using a layer of metal that is different than the layer of metal that forms the anodes.
Abstract:
An organic light-emitting diode display may have an array of pixel circuits. Each pixel circuit may contain an organic light-emitting diode that emits light, a drive transistor that controls current flow through the diode, and additional transistors such as switching transistors for loading data into the pixel circuit and emission transistors for enabling and disabling current flow through the drive transistor and diode. Gate driver circuitry may produce emission control signals that control the emission transistors. Display driver circuitry may generate a start signal with a digitally controlled pulse width. The start signal may be applied to shift register circuitry in the gate driver circuitry. The pulse width of the start signal may be adjusted to adjust the luminance of the display.
Abstract:
An electronic device display may have an array of pixel circuits. Each pixel circuit may include an organic light-emitting diode and a drive transistor. Each drive transistor may be adjusted to control how much current flows through the organic light-emitting diode. Each pixel circuit may include one or more additional transistors such as switching transistors and a storage capacitor. Semiconducting oxide transistors and silicon transistors may be used in forming the transistors of the pixel circuits. The storage capacitors and the transistors may be formed using metal layers, semiconductor structures. and dielectric layers. Some of the layers may be removed along the edge of the display to facilitate bending. The dielectric layers may have a stepped profile that allows data lines in the array to be stepped down towards the surface of the substrate as the data lines extend into an inactive edge region.
Abstract:
An electronic device may be provided with a display. The display may be formed from an array of organic light-emitting diode display pixels. Each display pixel may have an organic light-emitting diode having an anode and a cathode and may have an associated pixel circuit for controlling the light-emitting diode. The anodes may be formed from patches of metal arranged in an array on the display. The display pixels may be controlled using data lines and gate lines. The gate lines may control thin-film transistors in the pixel circuits. Gate driver circuitry along the left and right edges of the display may supply signals to the gate lines. The pixel circuits may be located in the center of the display between the gate driver circuitry. Some of the anodes may overlap the pixel circuits and some of the anodes may overlap the gate driver circuitry.
Abstract:
A touch screen display may include gate line driver circuitry coupled to a display pixel array. The display may be provided with intra-frame pausing (IFP) capabilities, where touch or other operations may be performed during one or more intra-frame blanking intervals. In one suitable arrangement, a gate driver circuit may include multiple gate line driver segments each of which is activated by a separate gate start pulse. Each gate start pulse may only be released at the end of an IFP interval. In another suitable arrangement, dummy gate driver units may be interposed among active gate driver units. Gate output signals may propagate through the dummy gate driver units during the IFP internal. In another suitable arrangement, each active gate driver unit may be provided with a buffer portion that protects at least some transistor in the gate driver unit from undesired stress.