Abstract:
The present invention provides a method for transceiving a broadcast channel signal and/or a control channel signal in a wireless access system and devices for supporting the same. The method for receiving a physical broadcast channel (PBCH) signal in a wireless access system, according to one embodiment of the present invention, comprises steps of: receiving synchronization signals; obtaining a physical cell identifier (PCID) on the basis of the synchronization signals; calculating a subcarrier index for indicating a PBCH area on the basis of the PCID; detecting the PBCH area by carrying out blind-decoding from a subcarrier, in which a subcarrier index is shown, in the subframe; and receiving a PBCH signal which is broadcasted through the PBCH area.
Abstract:
In this disclosure, methods for pre-compensation of the phase shifting error, and apparatuses for the same are disclosed. In one example, a device performs precoding of a digital signal, while acquiring information on an error caused by a phase shifting of the precoding. Then, the device performs phase compensation on the digital signal based on the acquired information. This phase compensated-digital signal is converted to an analogue signal, and is transmitted to a receiver.
Abstract:
A wireless communication system is disclosed. Disclosed herein are methods for transmitting a physical uplink control channel (PUCCH) signal in a wireless communication system, which includes setting transmit power for the PUCCH signal, and an apparatus thereof. If the PUCCH signal is transmitted on a subframe configured for a scheduling request (SR), the PUCCH signal includes one or more hybrid automatic repeat request acknowledgement (HARQ-ACK) bits and an SR bit. When determining the transmit power for the PUCCH, the SR bit is selectively considered depending on whether or not a transport block for an uplink shared channel (UL-SCH) is present in the subframe.
Abstract:
A user equipment (UE) for cancelling a self-interference (SI) signal is disclosed. The UE includes a rat-race coupler, a plurality of transceiving antennas capable of transmitting and receiving signals, a receive antenna, a transmission (Tx) chain connected to an input port when the rat-race coupler uses one port as the input port, and a reception (Rx) chain connected to the receive antenna and an isolated port when the rat-race coupler uses the one port as the input port.
Abstract:
An apparatus for cancelling a self-interference signal between a transmission antenna and a reception antenna is disclosed. The apparatus includes a first self-interference signal cancellation unit for cancelling a self-interference signal in consideration of a linear channel between the transmission antenna and the reception antenna, a second self-interference signal cancellation unit for cancelling a self-interference signal in consideration of nonlinear channel characteristic between the transmission antenna and the reception antenna or linear characteristic of a radio channel, and a controller for comparing a transmitted signal output from the transmission antenna and a received signal received by the reception antenna to provide a first coefficient to be applied to self-interference signal cancellation of a linear device in the first self-interference signal cancellation unit and a second coefficient to be applied to self-interference signal cancellation of a nonlinear device in the second self-interference signal cancellation unit.
Abstract:
The present invention relates to a wireless communication system and, more specifically, to a method and an apparatus for reporting channel status information (CSI). Particularly, the method by which a terminal in the wireless communication system reports the CSI, comprises the steps of: receiving a reference signal from a base station; and reporting, to the base station, the CSI generated by using the reference signal, wherein the CSI includes channel information for a plurality of antenna ports mapped according to a first parameter, and the first parameter is a value related to vertical domain antenna ports indicated through upper layer signaling.
Abstract:
The present invention relates to a wireless access system that supports massive MIMO, and provides a method for transceiving channel state information (CSI) for operating the massive MIMO and an apparatus for supporting said method. The method for transmitting CSI by a terminal in a wireless access system that supports massive multi-input multi-output (MIMO), according to one embodiment of the present invention, may comprise the steps of: receiving a signal including report period information; receiving downlink data including a reference signal; measuring first CSI using the reference signal; acquiring second CSI using the first CSI; and reporting the first CSI or the second CSI to a base station based on the report period information. According to the present invention, the first CSI may be information on a first antenna set including antennas for transmitting the reference signal, and the second CSI may be information on a second antenna set including antennas not transmitting the reference signal.
Abstract:
The present invention provides adaptive blind interference alignment (BIA) methods capable of controlling interference between users without channel information, and devices for supporting the same. A method for transmitting a signal according to the adaptive BIA method in a wireless access system, as one embodiment of the present invention comprises the steps of enabling a transmitter to constitute a first block including preferred signals and interference signals on the basis of the number of receivers within a cell and the number of reception modes of the receiver; enabling the transmitter to constitute a second block including one kind of signal from the preferred signals or the interference signals; enabling the transmitter to constitute alignment blocks for each receiver by combining the first block with the second block; and enabling the transmitter to transmit the alignment blocks to the receivers according to transmission symbol patterns corresponding to the alignment blocks.
Abstract:
An apparatus for cancelling a self-interference signal between a transmission antenna and a reception antenna is disclosed. The apparatus includes a first self-interference signal cancellation unit for cancelling a self-interference signal in consideration of a linear channel between the transmission antenna and the reception antenna, a second self-interference signal cancellation unit for cancelling a self-interference signal in consideration of nonlinear channel characteristic between the transmission antenna and the reception antenna or linear characteristic of a radio channel, and a controller for comparing a transmitted signal output from the transmission antenna and a received signal received by the reception antenna to provide a first coefficient to be applied to self-interference signal cancellation of a linear device in the first self-interference signal cancellation unit and a second coefficient to be applied to self-interference signal cancellation of a nonlinear device in the second self-interference signal cancellation unit.
Abstract:
The present invention relates to a wireless communication system. The method whereby a terminal receives synchronizing signals in a wireless communication system supporting multi-carriers, according to one embodiment of the present invention, comprises the steps of: receiving location information on domains, from which the synchronizing signals are transmitted, among the domains resulting from the division of the whole system bandwidth into N parts along a frequency axis and into M parts along a time axis (wherein N and M are natural numbers); and receiving the synchronizing signals from the domains corresponding to the location information, wherein the respective synchronizing signals transmitted to multiple carriers can be transmitted from domains having a different frequency and/or time.