Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment. A method by which a first UE receives a signal from a base station in a wireless access system supporting FDR transmission, according to one embodiment of the present invention, can comprise the steps of: receiving a first reference signal from the base station; calculating first channel information on self-interference by using the first reference signal; receiving a second reference signal from the base station, and receiving a third reference signal from a second UE at the same time as the second reference signal; calculating second channel information from which the self-interference is cancelled, on the basis of the second reference signal, the third reference signal and the first channel information; and receiving the signal by using the second channel information and third channel information on a channel receiving the signal.
Abstract:
The present disclosure relates to the operation and configuration of a station and an access point in a wireless LAN (WLAN) system, and more particularly, to a method for efficiently performing multi-user transmission by a station or an access point in a WLAN system and a device for the same. In particular, the present disclosure proposes a method and device for operating a station or an access point supporting multi-user transmission in a Frequency Division Multiple Access (FDMA) scheme or a Multi-User Multi Input Multi Output (MU-MIMO) scheme.
Abstract:
A method for transmitting uplink (UL) data requiring low latency in a wireless communication system is disclosed. The method performed by a user equipment (UE) includes receiving a first control message for informing a basic Contention-based PUSCH (Physical Uplink Shared Channel) Zone (CP zone) allocated to each subframe from an enhanced Node B (eNB), receiving a second control message for informing changes in a CP zone allocated to a specific subframe from the eNB, and transmitting UL data to the eNB through a CPRB (Contention PUSCH Resource Block) of the changed CP zone based on the received second control message. The first control message includes basic CP zone resource information indicating resource information of the basic CP zone, and the second control message includes changed CP zone resource information indicating resource information of the changed CP zone.
Abstract:
A method for a terminal connected to a fixed cell performing handover to a moving cell, according to one embodiment of the present invention, comprises the steps of: receiving, from the fixed cell, measurement configuration information containing measurement report conditions on the moving cell; if the measurement results on the moving cell satisfy the measurement report conditions, reporting, to the fixed cell, the measurement results on the moving cell; configuring a secondary connection in the moving cell in addition to a primary connection in the fixed cell; and performing handover to the moving cell by releasing the primary connection in the fixed cell and switching secondary connection in the moving cell to the primary connection.
Abstract:
A method for transmitting uplink (UL) data in a wireless communication system, the method performed by a UE according to the present invention comprises receiving physical uplink control channel (PUCCH) resources for transmission of a BSR message from a base station; transmitting a BSR message to the base station through the allocated PUCCH resources; receiving an UL grant for UL data transmission from the base station; and transmitting UL data to the base station through the received UL grant, where control information related to a structure of the PUCCH resources is received through allocation of the PUCCH resources.
Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment. A method for a base station for allocating resources in a wireless access systems supporting FDR according to an embodiment of the present invention comprises the steps of: selecting candidate terminals to be configured into a group from among a plurality of terminals; transmitting group configuration information to the candidate terminals; receiving, from the candidate terminals, interference information for interference between the terminals; configuring a plurality of terminals into one or more groups on the basis of the interference information; and allocating resources to the plurality of terminals on the basis of the groups.
Abstract:
The present invention relates to a wireless communication system. In detail, the present invention is a method for transmitting a scheduling request (SR) by a user equipment (UE) in a wireless communication system includes: receiving information on a resource for the scheduling request (SR) from a base station (BS); transmitting the scheduling request (SR) using the scheduling request (SR) resource transmitted over a control channel; and transmitting a first buffer status report (BSR) using uplink (UL) contention-based resources transmitted over a data channel. The UL contention-based resources are determined based on at least one of the resource for the scheduling request (SR) or an identifier (ID) of the UE.
Abstract:
A method for decoding an LDPC code for a forward error correction by a reception terminal of a wireless communication system according to an embodiment o the present invention comprises, in a bipartite graph including nodes that are differentiated into received nodes to which received packets are mapped and restoration nodes connected via edges to the received nodes, he steps of: obtaining first restoration packets corresponding to the restoration nodes using edges on a first packet passing path; determining error packet candidates to be excluded from the received packets when an error is detected in the first restoration packets; and obtaining second restoration packets from the bipartite graph from which the determined error packet candidates are excluded, wherein the step of obtaining the second restoration packets obtains the second restoration packets through the edges of a second packet passing path except for the edges of the received nodes to which the error packet candidates are mapped.
Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment. A resource allocation method of a base station in a wireless access system that supports a FDR, according to one embodiment of the present invention, comprises the steps of: transmitting a first frame setting for a configuration of an uplink subframe and a downlink subframe to a terminal which is set by a terminal-specific TDD; receiving, from the terminal, response information including traffic information of the terminal and/or frame setting information preferred by the terminal; and transmitting a second frame setting which has adjusted the ratios of the uplink subframe and the downlink subframe on the basis of the response information, wherein the second frame setting is capable of being set by shifting the first frame setting on the basis of the number of FDR interference terminals which simultaneously transmit an uplink.
Abstract:
A method and apparatus for performing a beamforming training for a multiple input multiple output (MIMO) operation in a wireless local area network is provided. The apparatus assigns at least one of a plurality of sector groups with respect to each of a plurality of array antennas. The apparatus determines a sector used for a data transmission during a sector sweep by transmitting a plurality of sector sweep messages in the plurality of sector groups through the plurality of array antennas to responders simultaneously.