AN IMAGING SYSTEM AND A LIGHT ENCODING DEVICE THEREFOR

    公开(公告)号:US20220307903A1

    公开(公告)日:2022-09-29

    申请号:US17616924

    申请日:2020-07-27

    Abstract: A spectral imaging system comprises: a spatial encoder comprising a first light encoding device comprising a first mask for spatial encoding, the first mask being configured with one or more encoding patterns; a spectral encoder comprising: a dispersion arrangement for splitting spatially encoded light from the first light encoding device into a plurality of components; and a second light encoding device comprising a second mask for spectral encoding of the plurality of components, the second mask having one or more encoding patterns; and at least one single-pixel photodetector positioned to measure light that is encoded by the masks. The spatial encoder is operable to spatially encode light by generating a sequence of different patterns or partial patterns of the one or more encoding patterns of the first mask. The spectral encoder is operable to spectrally encode light by relative movement between the dispersion arrangement and the second mask.

    Confocal measuring apparatus
    12.
    发明授权

    公开(公告)号:US11226233B2

    公开(公告)日:2022-01-18

    申请号:US15846204

    申请日:2017-12-19

    Abstract: A confocal measuring apparatus (1) includes a light source (10), an optical system (30) configured to receive reflected light from a measurement surface, a light guide part (20) into which a plurality of cores including a first core (26) and a second core (28) is built and configured to propagate the reflected light by the plurality of cores, a displacement amount measurement part (40) including a spectroscope (42) configured to separate the reflected light propagated by the first core into each wavelength components and a detector (44) having a plurality of light receiving elements arranged to correspond to a spectral direction by the spectroscope, and a peripheral image measurement part (60) configured to form an image of the reflected light propagated by the second core on the plurality of image pickup elements and to generate a peripheral image with respect to a measurement position of the measurement surface.

    Spectroscopic System and Method Therefor

    公开(公告)号:US20210369119A1

    公开(公告)日:2021-12-02

    申请号:US16949466

    申请日:2020-10-30

    Abstract: A spectroscopic system may include: a probe having a probe tip and an optical coupler, the optical coupler including an emitting fiber group and first and second receiving fiber groups, each fiber group having a first end and a second end, wherein the first ends of the fiber groups are formed into a bundle and optically exposed through the probe tip; a light source optically coupled to the second end of the emitting fiber group, the light source emitting light in at least a first waveband and a second waveband, the second waveband being different from the first waveband; a first spectrometer optically coupled to the second end of the first receiving fiber group and configured to process light in the first waveband; and a second spectrometer optically coupled to the second end of the second receiving fiber group and configured to process light in the second waveband.

    Systems and methods for imaging fine art paintings

    公开(公告)号:US11025800B2

    公开(公告)日:2021-06-01

    申请号:US16383495

    申请日:2019-04-12

    Abstract: Color values as a function of position within a painting may be determined by acquiring a plurality of sets of images of the painting. Each set of images may correspond to a different region within the painting. Each image in a set of images may be acquired using a different lighting condition. An optical system comprising a telecentric lens may be used to acquire each image. Within a set of images, corresponding lightness values of pixels may be compared. Lightness values varying from other corresponding lightness values more than a threshold amount may be eliminated. The non-eliminated lightness values for a pixel may be used to generate a processed value for the pixel. The processed values for each pixel representing an imaged region may be combined into a single image. Eliminating lightness values may remove specular highlights and/or shadows. Each of the single images corresponding to each set of images may be registered together to generate a color map image of the painting. The generated color map image may be used to correct color data collected by laser scanning the painting. A 3D printer may, for example, use the corrected laser color data in combination with an elevation map of the painting to produce a faithful reproduction of the painting.

    Mirror alignment in optical scientific instruments

    公开(公告)号:US10983334B2

    公开(公告)日:2021-04-20

    申请号:US16234656

    申请日:2018-12-28

    Abstract: A mirror assembly has one or more axes of motion and includes a mirror that is movable and forms an acute angle with a plane orthogonal to its axis of motion. The mirror assembly may include a first reflective mirror surface in the incoming optical path that is movable and forms an acute angle with a plane orthogonal to its axis of motion, and a second reflective mirror surface in the outgoing optical path that is movable and forms an acute angle with a plane orthogonal to its axis of motion and is moveable in a linear translation to scan the mirror in the interferometer in a way to generate a normal interferogram.

    Dental demineralization detection, methods and systems

    公开(公告)号:US10888230B2

    公开(公告)日:2021-01-12

    申请号:US15868623

    申请日:2018-01-11

    Abstract: Methods and systems for detecting early stage dental caries and decays are provided. In particular, in an embodiment, laser-induced autofluorescence (AF) from multiple excitation wavelengths is obtained and analyzed. Endogenous fluorophores residing in the enamel naturally fluoresce when illuminated by wavelengths ranging from ultraviolet into the visible spectrum. The relative intensities of the AF emission changes between different excitation wavelengths when the enamel changes from healthy to demineralized. By taking a ratio of AF emission spectra integrals between different excitation wavelengths, a standard is created wherein changes in AF ratios within a tooth are quantified and serve as indicators of early stage enamel demineralization. The techniques described herein may be used in conjunction with a scanning fiber endoscope (SFE) to provide a reliable, safe and low-cost means for identifying dental caries or decays.

    Spectroscopic analysis apparatus
    18.
    发明授权

    公开(公告)号:US10859491B2

    公开(公告)日:2020-12-08

    申请号:US16275948

    申请日:2019-02-14

    Abstract: A spectroscopic analysis apparatus includes a laser light source that emits laser light, of which wavelength changes, toward a reflector inside a probe, the probe being configured to be disposed in a flow passage of a measurement target fluid, a light receiver that receives the laser light reflected by the reflector, and a controller that analyzes the measurement target fluid using a result of reception acquired by the light receiver and controlling the laser light source. The controller controls the laser light source to perform at least one scan of the laser light, the controller controlling the laser light source such that a scanning time of the laser light is equal to or shorter than a light-receivable time of the laser, the scanning time being a time to scan the laser light emitted from the laser light source in a certain wavelength range, the light-receivable time being a time in which the laser light reflected by the reflector can be received by the light receiver.

    Gas analysis system
    19.
    发明授权

    公开(公告)号:US10753864B2

    公开(公告)日:2020-08-25

    申请号:US16215269

    申请日:2018-12-10

    Abstract: A gas analysis system includes a spectroscopy assembly coupled to a vehicle. The spectroscopy assembly includes a multiplexer configured to combine a plurality of light beams into a multiplexed light beam, wherein the multiplexer is configured to direct the multiplexed light beam toward a target surface. Additionally, the spectroscopy assembly includes a collection optic configured to receive a reflected multiplexed light beam from the target surface. Further, the spectroscopy assembly includes a controller configured to de-multiplex the multiplexed light beam into a plurality of reflected light beams and determine a spectral intensity of the plurality of reflected light beams.

    Compact, power-efficient stacked broadband optical emitters

    公开(公告)号:US10656014B2

    公开(公告)日:2020-05-19

    申请号:US15512977

    申请日:2015-09-23

    Abstract: The present disclosure describes broadband optical emission sources that include a stack of semiconductor layers, wherein each of the semiconductor layers is operable to emit light of a different respective wavelength; a light source operable to provide optical pumping for stimulated photon emission from the stack; wherein the semiconductor layers are disposed sequentially in the stack such that a first one of the semiconductor layers is closest to the light source and a last one of the semiconductor layers is furthest from the light source, and wherein each particular one of the semiconductor layers is at least partially transparent to the light generated by the other semiconductor layers that are closer to the light source than the particular semiconductor layer. The disclosure also describes various spectrometers that include a broadband optical emission device, and optionally include a tuneable wavelength filter operable to allow a selected wavelength or narrow range of wavelengths to pass through.

Patent Agency Ranking