Abstract:
Solid materials may be processed using shockwaves produced in a supersonic gaseous vortex. A high-velocity stream of gas may be introduced into a reactor. The reactor may have a chamber, a solid material inlet, a gas inlet, and an outlet. The high-velocity stream of gas may be introduced into the chamber of the reactor through the gas inlet. The high-velocity stream of gas may effectuate a supersonic gaseous vortex within the chamber. The reactor may be configured to facilitate chemical reactions and/or comminution of solid feed material using tensive forces of shockwaves created in the supersonic gaseous vortex within the chamber. Solid material may be fed into the chamber through the solid material inlet. The solid material may be processed within the chamber by nonabrasive mechanisms facilitated by the shockwaves within the chamber. The processed material that is communicated through the outlet of the reactor may be collected.
Abstract:
Method and system for controlled nanodiamond synthesis based on treating of a specially prepared solid carbon source target including carbon containing material in liquid media by irradiation energy beam focused at a predetermined distance from the target surface and having parameters to produce a light-hydraulic effect impacting the target surface and leading to the forming of diamond nanocrystals.
Abstract:
A method for processing liquids and suspensions using shockwaves that includes providing an apparatus including a shockwaves generation section and a shockwaves processing section; placing media to be processed into the shockwaves processing section through continuous or intermittent injection; introducing a pressurizing gas into the shockwaves generation section; introducing a detonable mixture into the shockwaves generation section; causing formation of at least one of a shockwave within the shockwaves generation section by igniting the detonable mixture so that at least one of a shockwave propagates from detonation section into shockwaves processing section; utilizing physical, chemical, biological or mechanical effects of the shockwaves in the shockwaves processing section; venting detonation products from the shockwaves generation section via a pressure relief valve; and repeating to achieving a pre-determined degree of processing liquids, liquid suspension, colloids, gels, pastes located in the shockwaves processing section.
Abstract:
A method for promoting chemical changes in a medium comprising the steps of placing a medium within an electromagnetically resonant structure that permits initiating a spark or a discharge in the medium by means of applying pulsed microwave energy in an electromagnetically resonant structure, the electromagnetically resonant structure being simultaneously mechanically resonant for acoustic or shock waves generated by the spark or discharge caused by the pulsed resonant microwave electromagnetic field; and providing a means to feed material into a reaction chamber within the electromagnetically resonant structure and collecting products of a reaction inside the reaction chamber.
Abstract:
A novel process and apparatus is disclosed for performing chemical reactions. Highly compressed gaseous streams such as H2, CO, CO2, H2O, O2, or CH4 are raised to Mach speeds to form supersonic jets incorporating shockwaves. Two or more such jets are physically collided together to form a localized reaction zone where the energy from the shockwaves causes endothermic reactions wherein the chemical bonds of the reactant gases are broken. Between and among reactants molecular surface interaction and molecular surface chemistry take place. In the ensuing exothermic reactions a desired new chemical product is formed and this product is locked into a lower state of enthalpy (state of energy of formation) through adiabatic cooling by means of a free jet expansion.
Abstract:
A combinatorial synthesis of the diamond unit cell is disclosed wherein a carbon atom free of meta-stable radical impurities reacts with cyclic hydrocarbon compounds or heterocyclic compounds whose structure is tetrahedral or nearly tetrahedral. Reactions conducted in the vapor phase and in the solid state are disclosed.
Abstract:
This invention relates to a method of improving the crystalline perfection of IIa diamond crystals by heating the grown diamond crystals at an elevated temperature and an elevated pressure. The invention extends to grown diamond material having a low extended defect density with low nitrogen concentration.
Abstract:
The present disclosure is directed to the use of high-intensity acoustic cavitation, including carried out under pressure in cavitation chambers to convert graphite powder or similar carbon based substances into low-cost, industrial diamonds. In some aspects, this can facilitate the development of an economical manufacturing process for the production of superior-quality, industrial-grade diamond materials.
Abstract:
A target capsule includes (A) a pedestal having a central projection, (B) a pedestal aid attached to the central projection so as to define a sample-loading assembly, and (C) an impact-receiving member, wherein the components (A), (B), and (C) are detachable from each other. The impact target capsule can be readily loaded with a sample, allows the sample to be easily retrieved after application of impact pressure, and can be used repeatedly, and thereby the capsule can be preferably used as an impact compression apparatus in combination with a single-stage powder gun or a single-stage gas gun.
Abstract:
Methods of synthesizing superabrasive particles such as diamonds and cubic boron nitride are disclosed and described. One procedure includes providing a superabrasive precursor including a source material in a metal matrix. The carbon source can contain a majority of carbon atoms oriented in a rhombohedral polytype configuration. A shock wave can be passed through the carbon source that is sufficient to convert the diamond to graphite. The superabrasive precursor can be formed by dissolving hexagonal carbon in a suitable molten metal or by mixing particulate components. Similarly, hexagonal boron nitride can be used in a metal matrix which is subjected to a shock wave having sufficient energy to form cubic boron nitride. The superabrasive particles produced using these methods can be provided at relatively high yields with reduced costs.