Abstract:
The invention relates to a power electronics component that comprises a planar ceramics substrate (2) on whose one face condutor tracks (6), applied in thick-film technique, are disposed for electrically connecting electrical power components (7) of a circuit that are also disposed on the ceramics substrate (2). The ceramics substrate (2), with its other face, is brazed onto a metal a metal support element (1) that serves as a heat spreader. The support element (1) is linked with a thermoconducting housing part housing that accommodates the support element (1) in a thermoconductive manner. On the face of the support element (1) facing away from the ceramics substrate (2), approximately opposite the ceramics substrate (2), a second ceramics substrate (4) is brazed onto the ceramics substrate (2) that carries the circuit and has approximately the same dimensions.
Abstract:
A function module with a built-in plate-type heat dissipation device. The function module includes a first circuit board, a second circuit board, and a plate-type heat dissipation device. The first circuit board includes a first surface with a first ground layer formed thereon. The second circuit board is coupled to the first circuit board, and includes a second surface facing the first surface. A second ground layer is formed on the second surface. The plate-type heat dissipation device is disposed between the first circuit board and the second circuit board, and abuts the first ground layer and the second ground layer respectively.
Abstract:
A circuit carrier assembly includes a plurality of substrates directly secured together by an electrically conductive securing substance. In one example, the securing substance is a conductive epoxy. In another example, the electrically conductive securing substance is solder. Still another example includes a combination of solder and conductive epoxy. A non-conductive epoxy provides further mechanical connection and thermal conductivity between the substrates while also electrically isolating selected portions of the substrates in one example. The electrically conductive securing substance not only mechanically secures the substrates together and provides thermal conductivity between the substrates, which increases the thermal capacitance of the assembly, but also establishes at least one electrically conductive path between the substrates.
Abstract:
A process is disclosed for use in the manufacture of layered printed circuit board assembly having first and second layers with electrically conductive patterns thereon. The assembly has at least one inner layer between the first and second layers for receiving and retaining a surface-mount device inserted through aligned holes in the layers. The device has an electrically conductive cap at each end for electrical connection to the conductive patterns. The inner layer physically retains the surface-mount device in place pending the electrical connection of the end caps to the conductive patterns, and by virtue of its being inherently compliant and yielding, provides for physically retaining the surface-mount device in place pending the electrical and mechanical connection of the electrically conductive end caps to the conductive patterns.
Abstract:
In a printed circuit board wherein chip components are mounted in aligned holes provided through two printed substrates stacked over one another, spacer members are interposed between the printed substrates so as to define spaces therebetween around the holes. Since the printed substrates and chip components are movable relative one another due to such spaces, thermal stresses in the joints between the chip components and the printed substrates can be relieved.
Abstract:
A circuit board and an electronic device, the circuit board includes a first wiring board including a first substrate and a first wiring layer disposed on a first side surface of the first substrate, and the first wiring layer includes a first ground wiring; the circuit board further includes a first protective layer and a first electromagnetic interference shielding layer sequentially stacked on a side of the first wiring layer away from the first substrate; the first protective layer has a first opening exposing at least a portion of a first ground wiring, the first opening is filled with a first conductive material, height difference between a surface of the first conductive material and a surface of the first protective layer away from the first substrate ranges from 0 to 2 microns, and the first conductive material connects the first electromagnetic interference shielding layer to the first grounding wiring.
Abstract:
A method and circuit board arrangement for an intrinsically safe portable device includes two or more circuit boards having a frame structure that forms a contiguous boundary around a space between the circuit boards. In the space there are circuit components mounted on both circuit boards, and a connector that connect the two circuit boards. An encapsulant material fills the space bounded by the frame structure between the circuit boards to exclude airborne material from coming into contact with the encapsulated circuit components.
Abstract:
In one general aspect, an electronic device module includes a first board, a first device mounted on a first surface of the first board, a second board disposed below the first board, and a plurality of second devices disposed between the first board and the second board, wherein a surface of each second device the plurality of second devices is bonded to a second surface of the first board and another surface of each of the second devices is bonded to the second board.
Abstract:
Examples herein include modules and connections for modules to couple to a computing device. An example module includes a housing comprising an end to couple to a computing device, multiple capacitive pads that each include data contacts to enable data transfer, a power contact pad to provide or receive power, and a ground contact pad to couple to ground. The ground contact pad is larger in size than the power contact pad, and the ground contact pad is positioned closer than the power contact pad to the end of the housing configured to couple to the computing device.
Abstract:
An apparatus includes a coreless substrate with an embedded die that is integral to the coreless substrate, and at least one device assembled on a surface that is opposite to a ball-grid array disposed on the coreless substrate. The apparatus include an at least one stiffener layer that is integral to the coreless substrate and the stiffener layer is made of overmold material, underfill material, or prepreg material.