Abstract:
In an image forming apparatus (1) utilizing electrophotographic technology, position and posture of a laser scan unit (5) with respect top a frame (13) is adjusted easily without cost rise and upsizing of the apparatus. Semicircular recesses (53) and an elongate hole (54) are formed at each of three fixing portions (52a, 52b and 52c) in the vicinities of side faces (51b) and a rear face (51c) of a housing (51) of the laser scan unit (5), and an adjuster 30 serving as a spacer is attached to each of the fixing portions (52a, 52b and 52c). Each adjuster (30) is elected among a plurality of kinds of adjustors respectively having different thicknesses manufactured by press working of metal plates commercially produced and having different thicknesses with using the same dies. The adjustor has a pair of semicircular engaging portions 30b and a coupling portion 30a perpendicular to and coupling the engaging portions (30b).
Abstract:
In an image forming apparatus (1) utilizing electrophotographic technology, position and posture of a laser scan unit (5) with respect top a frame (13) is adjusted easily without cost rise and upsizing of the apparatus. Semicircular recesses (53) and an elongate hole (54) are formed at each of three fixing portions (52a, 52b and 52c) in the vicinities of side faces (51b) and a rear face (51c) of a housing (51) of the laser scan unit (5), and an adjuster 30 serving as a spacer is attached to each of the fixing portions (52a, 52b and 52c). Each adjuster (30) is elected among a plurality of kinds of adjustors respectively having different thicknesses manufactured by press working of metal plates commercially produced and having different thicknesses with using the same dies. The adjustor has a pair of semicircular engaging portions 30b and a coupling portion 30a perpendicular to and coupling the engaging portions (30b).
Abstract:
A lens barrel includes a first blade member, a second blade member provided at an object side of the first blade member and overlapped with at least part of the first blade member in an optical axis direction, a drive unit configured to perform an opening and closing drive of the first blade member and the second blade member, and a biasing member configured to apply a biasing force to the drive unit, the biasing member is disposed in a direction orthogonal to an optical axis with respect to the first blade member, and the biasing member is disposed so as to overlap with at least part of the second blade member in the optical axis direction during an opening and closing operation of the second blade member.
Abstract:
An adjusting method for a lens unit used in an image reading apparatus which images image information of an original onto an image reading unit by the lens unit and reads the image information, the lens unit including rotationally-symmetrical lenses, a lens barrel including the rotationally-symmetrical lenses and an adjusting lens, the adjusting method including: performing rotational adjustment of the lens barrel with respect to the adjusting lens; and imaging an adjusted chart onto one-dimensional photoelectric transducers via the lens unit, obtaining contrast depth characteristics of images corresponding to at least three angles of field of the lens unit among images of the adjusted chart, and, according to the obtained contrast depth characteristics, performing position adjustment of the adjusting lens in at least one of an array direction of the one-dimensional photoelectric transducers, a direction orthogonal to the array direction and an optical axis direction of the lens unit.
Abstract:
According to the present invention, between a unit base and a transparent original support plate, multiple sensor assemblies are arranged, to form a zigzag pattern, as a first array for reading an original and a second array for reading the original following the first array. Each of the sensor assemblies includes a sensor holder, a line sensor and a focus setup unit. Each of the sensor holders, which serve as fulcrums, are rotatable at a single pivot (a rotation center), along the wall of a unit base that is parallel to the original support plate. When the sensor holders are rotated and positioned at predetermined locations, they are fixed to the wall. The line sensors 51 are held, relative to the sensor holders, in the main scanning direction and in the sub-scanning direction, and are moved in an approaching or separating direction in which the line sensors approach or are separated from the wall and the original support plate. The focus setup units, each of which includes coil springs and spacers, move the line sensors 51 in the approaching or separating direction, and position the line sensors 51 at locations whereat focuses are adjusted.
Abstract:
An adjustable optical mechanism includes a carriage base, an adjusting board mounted on the carriage base, and a circuit board mounted on the adjusting board. An image sensor is mounted on the circuit board and corresponds to a lens mounted on the carriage base. Deforming the adjusting board and adjusting the position and tilt of the adjusting board relative to the carriage base, the position of the image sensor may be properly adjusted so as to obtain better image quality.
Abstract:
An image sensor assembly includes a sensor base and plural image sensors. Each image sensor includes plural sensor pixels. The plural sensor pixels and the plural image sensors are arranged in the same direction. Each image sensor is fixed on the sensor base, and each image sensor corresponds to a next one so that all image sensors can be aligned. There is a predetermined gap between two adjacent image sensors. Therefore, each image sensor is not skew and shifted when the image sensor assembly is mounted on the carriage, and the skew problem between each image sensor and the carriage base can be solved by micro-adjusting the position of the sensor base relative to the carriage base.
Abstract:
An image sensor sub-assembly for a scanner or other image acquisition device includes an image sensor array that detects light imaged by a scanner optical system and an image sensor module that enables calibration of the position of the image sensor array relative to the optical system. In this way, with the optical system being constructed within tolerances, the module enables alignment of the image sensor array to the optical system by its adjustment. Preferably, the sensor module is calibrated to defined standards, making the optical system's calibration independent of the specific module and the module's calibration independent of the specific optical system used in a given scanner. Preferably, the module enables positioning of the sensor array with six degrees of freedom. Further, the electronic circuit board, on which the sensor array is integrated, is separate from the board, on which the analog to digital converters are located. This has the advantage of enabling replacement of the analog to digital converters, a primary source of improper operation in the scanner's electronic components, without requiring the replacement of the optical sensor array, and thus re-alignment.
Abstract:
In an image reading apparatus having an easy-toad-just optical system, a unit is composed of a first sub-unit including an image forming lens and a second sub-unit including a solid-state image pickup element. The first sub-unit and the second sub-unit are mutually adjusted in position in X-axis, Y-axis and Z-axis while the two sub-units are also adjustable around X-axis and Z-axis. After the first sub-unit and the second sub-unit are adjusted using a tool, the unit is then assembled into the apparatus. The unit is rotated around an optical axis of the image forming lens for adjustment of perpendicularity. The unit is also rotated around a line direction of the solid-state image pickup element for adjustment of scanning synchronization (the reading position in a sub-scan direction).
Abstract:
There is disclosed an image reading apparatus in which the scanning optical system having a slit is caused to scan in a short-side direction of the slit, and light passed through the slit and reflected from or transmitted through an original is guided to a solid-state image pickup element through an optical image forming element so that the image is formed on the solid-state image pickup element and is read. In the apparatus, opening portions for detecting a shift in relative positional relationship between the slit and the solid-state image pickup element are formed in both end portions of the slit in its longitudinal direction corresponding to a portion other than an effective image region of the solid-state image pickup element.