Abstract:
A force detection device includes: a substrate; and a force transmission block. The substrate includes: a mesa gauge arranged on a principal plane of the substrate and providing a bridge circuit; a connection region arranged on the principal plane; and a sealing portion surrounding all around the mesa gauge and connected to the force transmission block. The mesa gauge includes: a first mesa gauge extending in a first direction; and a second mesa gauge extending in a second direction and spaced apart from the first mesa gauge. The connection region electrically connects the one end of the first mesa gauge and the one end of the second mesa gauge.
Abstract:
A transducer including a deformation body with a strain gage produces hysteresis-affected measured values based on the strain of the deformation body. Each measured value is to be corrected by the hysteresis error. For this purpose, a hysteresis model is formed from a recorded loading characteristic curve and the theory of the dipole density of the oriented elementary dipoles in the interior of the deformation body. With the aid of the hysteresis model, and the determined hysteresis-affected measured values, and in connection with the acquired loading history, a correction value is derived and used to correct the hysteresis error.
Abstract:
The invention relates to a method and a device for the hysteresis correction of the measured values of one or more sensors (1), which have been determined in a deformation body using extensometers. According to the invention, each measured value x affected by hysteresis is corrected for the hysteresis error. To achieve this, a hysteresis model is created from the registered strain characteristic curve and the theory of dipole density of the aligned elementary hysteresis in the interior of the deformation body. Said model is used, together with the measured values x affected by hysteresis and the recorded strain history, to derive a correction value for correcting the hysteresis error.
Abstract:
A circuit arrangement is described for compensating temperature non-linearity of the characteristics of piezoresistive, metallic or polycrystalline resistors (bridge resistors) connected in a bridge circuit, the non-linearities being caused by non-linearities of the resistors, in particular due to the physical quantities affecting the bridge circuit (temperature, pressure, bimetal effects, non-linear membrane stresses), and the resistors being composed of partial resistors having different temperature coefficients, with each of the partial resistors having a certain linear and non-linear temperature response. The partial resistors of each bridge resistor are selected on the basis of their known linear and non-linear temperature characteristics so that an asymmetric layout of the bridge circuit is obtained and a non-linear variation of a bridge output voltage of the circuit arrangement can be essentially compensated.
Abstract:
Pressure sensor circuit (12) develops an input sensor signal (V01) varying linearly as a function of sensed pressure (P) over a range (P.sub.1) of pressure. An error reduction circuit (14-21, R10-R14) having operational amplifiers (16, 19) and a semiconductor device (21) receives the input sensor signal and provides an output signal (V.sub.OUT). The output signal varies at a first high constant rate during a first portion (P.sub.2) of the pressure range and at a lower constant rate during a second portion (P.sub.3) of the pressure range. A break point (BP) between the first and second pressure range portions occurs when the input sensor signal magnitude exceeds a voltage level (V.sub.T) magnitude. The rate of change of the output signal during the first pressure range portion exceeds the rate of change of the input sensor signal during this same pressure range and thus the percentage of error of the output signal is less during the first pressure range portion than the percentage of error of the input sensor signal. The break point and rates of change of the output signal are substantially temperature independent and each can be independently adjusted.
Abstract:
A transducer system which employs in combination an impedance bridge circuit with a differential amplifier and includes a feedback circuit to equalize nonlinearity in the components of the impedance bridge.
Abstract:
Apparatus and associated methods relate to a preloaded force sensor, the preloaded force being greater than a force threshold separating a non-linear response region of sensor operation from a substantially linear response region of sensor operation. In an illustrative embodiment, the total applied force includes the preloaded force and an externally-applied force, the preloaded force being predetermined such that electrical signal response is substantially linear for positive externally-applied forces which when added to the preload force do not exceed the maximum force. In some embodiments, the externally-applied force may be transferred to a force-sensing die via a force-transfer member. In an exemplary embodiment, a spring having a predetermined spring coefficient may apply the predetermined preload force to the force-transfer member. In an exemplary embodiment, externally-applied positive forces may be simply calibrated using gain and offset corrections.