Abstract:
Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and fluid catalytic cracking. Feeds to the mixed feed steam cracker include light products and naphtha from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline and FCC naphtha aromatics extraction zone within the battery limits.
Abstract:
The invention concerns a process for converting a hydrocarbon feed, said process comprising the following steps: a) a step of hydrocracking the feed in the presence of hydrogen; b) a step of separating the effluent obtained from step a); c) a step of precipitating sediments, in which the heavy fraction obtained from the separation step b) is brought into contact with a distillate cut at least 20% by weight of which has a boiling point of 100° C. or more for a period of less than 500 minutes, at a temperature in the range 25° C. to 350° C., and at a pressure of less than 20 MPa; d) a step of physical separation of the sediments from the heavy fraction obtained from step c); e) a step of recovering a heavy fraction having a sediment content, measured using the ISO 10307-2 method, of 0.1% by weight or less.
Abstract:
Herein disclosed is a method of producing value-added product from light gases, the method comprising: (a) providing light gases comprising at least one compound selected from the group consisting of C1-C6 compounds and combinations thereof; (b) intimately mixing the light gases with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the dispersion is supersaturated with the light gases and comprises gas bubbles at least some of which have a mean diameter of less than or equal to about 5 micron(s); (c) allowing the value-added product to form and utilizing vacuum to extract unreacted light gases from the liquid carrier; (d) extracting the value-added product; wherein the value-added product comprises at least one component selected from the group consisting of higher hydrocarbons, hydrogen, olefins, alcohols, aldehydes, and ketones. A system for producing value-added product from light gases is also disclosed.
Abstract:
The present disclosure provides a system and method for responding to an unintended increase in pressure within a high pressure processing system. The system and method of the present disclosure provides a pressure relief system that releases pressure reliably even if the material under pressure is of mixed phase. In addition, the system and method for releasing pressure avoids the need for complex subsystems to contain and process materials that escape the system during the pressure release process.
Abstract:
A reconstituted non-asphaltenic oil Pa comprising at least 28% by weight of naphtha N, having a ratio R of 1.5 or more and a gasoline potential, POTg, in the range 47 to 70, in which: R=(0.9 N+0.5 VGO+)/(MD+0.1 VGO+), POTg=0.9N+0.5 VGO+, with in % by weight: N=naphtha: [30° C./170° C.]; MD=middle distillates: ]170° C./360° C.] and VGO+=fraction boiling above 360° C.R indicates the relative gasoline potential of a non residual oil over middle distillates during its subsequent refining.
Abstract:
A catalytic hydrocracking reactor vessel includes enhanced components for the conversion of a hydrogen gas and fossil fuel feedstream to light liquid hydrocarbons. The reactor vessel comprises one or more of a reactor cup riser with a helical cyclonic separator conduit for separating a liquid and vapor product stream to provide an essentially vapor-free liquid recycle stream; a grid plate bubble cap with wall housing having serrated edges for producing small hydrogen bubbles of increased total surface area of bubbles at lower pressure drop; a feedstream inlet pipe sparger containing rows of downward directed slots for even distribution of the feedstream across the cross-sectional area of the reactor and providing free drain of solid particles from the sparger; and optionally a liquid recycle inlet distributor containing vertically curved plates for creating a whirling motion in the liquid recycle stream for better mixing with the feedstream with minimal solids settling.
Abstract:
A catalytic hydrocracking reactor vessel for the conversion of a hydrogen gas and fossil fuel feedstream to light liquid hydrocarbons. The reactor vessel comprises reactor cup riser with a helical cyclonic separator conduit for separating a liquid and vapor product stream to provide an essentially vapor-free liquid recycle stream, a grid plate bubble cap with a tapered bell cap wall housing having serrated edges for producing small hydrogen bubbles of increased total surface area of bubbles at lower pressure drop, optionally a feedstream inlet pipe sparger containing rows of downward directed slots for even distribution of the feedstream across the cross-sectional area of the reactor and providing free drain of solid particles from the sparger, and optionally a liquid recycle inlet distributor containing vertically curved plates for creating a whirling motion in the liquid recycle stream for better mixing with the feedstream with minimal solids settling.
Abstract:
At least one decomposable molybdenum compound selected from the group consisting of molybdenum dithiophosphates and molybdenum dithiocarbamates is mixed with a hydrocarbon-containing feed stream. The hydrocarbon-containing feed stream containing such decomposable molybdenum compound is then contacted in a hydrovisbreaking process with hydrogen under suitable hydrovisbreaking conditions.