Abstract:
The provided technologies provide an implant closure device having a mesh layer formed on a flexible substrate, collectively forming a sealable member, that improves a seal formed over an aperture in a body lumen. The mesh facilitates a faster and more secure adherence of the sealable member to the surrounding edges at the puncture site. Furthermore, the provided technology may promote platelet-capture and encourage localized platelet aggregation at the exposed collagen in the wound edges on the mesh layer. The platelet impregnated mesh layer can facilitate cellular adhesion, enabling the sealable member that is local to the wound opening to act, in essence, as a “biological glue.”
Abstract:
The present invention regards nano surfaces and particularly a gradient based nano surface. According to embodiments of the invention a surface bound gradient is created by distributed nanoparticles along a plane surface. This procedure greatly reduces the number of prepared surfaces needed, as well as the methodological error of analysis of adsorption and adhesion phenomena.
Abstract:
An apparatus and method for coating an organic film are disclosed. The apparatus comprises an evaporation device, an electron emission device and a spray device; wherein the evaporation device comprises an evaporation container, the evaporation container is a linear evaporation container, in which a uniform organic gas is generated; the electron emission device is horizontally arranged over the evaporation container such that the organic gas evaporated in the evaporation container is uniformly charged and becomes charged organic gas; the spray device is provided with an electric field, under which the charged organic gas is moved toward a substrate so as to deposit the organic film on the substrate.
Abstract:
The present invention relates to a ceramic complex coating material having heat resistance, abrasion resistance, and low friction characteristics and applied on a surface of a rotating shaft to increase resistance of a mechanical element such as a rotating shaft of a turbine or the like in sliding-contact operation at a high speed without oil feeding under high temperature conditions of 400 to 900° C. to friction, heat, and abrasion resulted from contact with a bearing.The ceramic complex lubricant composition according to an embodiment of the present invention may show an excellent lubrication performance, have a high heat resistance to allow for a continuous use at a temperature of 400° C. or more, and exhibit an excellent abrasion resistance. The composition according to the embodiment of the present invention may be used as a coating lubricant for a surface of many types of sliding members in a turbine shaft for power generation, a skirt member of an automobile engine cylinder, a steel hot rolling plant, wire rod rolling or the like which are driven in a high temperature environment.
Abstract:
In some aspects, a system for applying a fiber matrix on a tubular conduit is provided. The system can include a tubular conduit, a mandrel and a fiber matrix delivery assembly. The mandrel can comprise an elongate shaft and a rolling membrane configured to atraumatically engage the tubular conduit.
Abstract:
The invention refers to a method for forming particles or droplets of at least one substance comprising the steps of providing a foamed medium, which foamed medium comprises said substance, and forming particles or droplets of said substance at least partly by electrostatic processing. The use of foamed medium in electrostatic processing enables higher production speeds and increases the evenness of a coating layer formed by electrospinning or electrospraying the particles or droplets on a substrate.
Abstract:
An apparatus and method for coating an organic film are disclosed. The apparatus comprises an evaporation device, an electron emission device and a spray device; wherein the evaporation device comprises an evaporation container, the evaporation container is a linear evaporation container, in which a uniform organic gas is generated; the electron emission device is horizontally arranged over the evaporation container such that the organic gas evaporated in the evaporation container is uniformly charged and becomes charged organic gas; the spray device is provided with an electric field, under which the charged organic gas is moved toward a substrate so as to deposit the organic film on the substrate.
Abstract:
A thermally and electrically conductive structure comprises a carbon nanotube (110) having an outer surface (111) and a carbon coating (120) covering at least a portion of the outer surface of the carbon nanotube. The carbon coating may be applied to the carbon nanotube by providing a nitrile-containing polymer, coating the carbon nanotube with the nitrile-containing polymer, and pyrolyzing the nitrile-containing polymer in order to form the carbon coating on the carbon nanotube. The carbon nanotube may further be coated with a low contact resistance layer (130) exterior to the carbon coating and a metal layer (140) exterior to the low contact resistance layer.
Abstract:
Well treatment particulates are coated with polyionic material and a composite is formed comprising multiple layers of polyelectrolyte, each layer composed of polyionic material counter to the polyionic material of the polyelectrolyte layer to which it is adjacent.
Abstract:
The invention provides an intermediate storage device of an electrostatic coating system that can clean efficiently, a method for cleaning the same, and a method for coating. An intermediate storage device 10 comprises: a first hole 141 which is open to a cylinder chamber 14 and is connected to a paint supply source; a second hole 142 which is open to the cylinder chamber 14 and is connected to a coating gun; and a switch means which switches between a first cleaning which cleans the cylinder chamber 14 by supplying cleaning fluid W from the first hole 141 and discharging from the second hole 142 waste fluid that has undergone cleaning and a second cleaning which cleans the cylinder chamber 14 by supplying cleaning fluid W from the second hole 142 and discharging from the first hole 141 waste fluid that has undergone cleaning.