Abstract:
This disclosure provides a method and system to detect a predefined activity, e.g., vandalism, loitering, trespass, etc., associated with a parked vehicle. According to an exemplary embodiment, a method includes capturing video of a parking area and processing the video to detect vandalism and/or loitering with respect to a region of interest associated with the parked vehicle.
Abstract:
A system for estimating parking occupancy includes a vehicle-detection device including an adjustable mast supporting an image capture device at a select height. The image capture device acquires video of a current parking area. A computer processor in communication with the image capture device is configured to receive the video data and define a region of interest in the video data. The processor is further configured to perform a spatial transform on the ROI to transform the ROI to a normalized geometric space. The processor is further configured to apply features of a detected object in the normalized geometric space to a vehicle classifier—previously trained with samples acquired from a normalized camera perspective similar to the normalized geometric space—and determine the occupancy of the current parking area using an output of the classifier.
Abstract:
Provided is a method and system for efficient localization in still images. According to one exemplary method, a sliding window-based 2-D (Dimensional) space search is performed to detect a parked vehicle in a video frame acquired from a fixed parking occupancy video camera including a field of view associated with a parking region.
Abstract:
This disclosure provides vehicle detection methods and systems including irrelevant search window elimination and/or window score degradation. According to one exemplary embodiment, provided is a method of detecting one or more parked vehicles in a video frame, wherein candidate search windows are limited to one or more predefined window shapes. According to another exemplary embodiment, the method includes degrading a classification score of a candidate search window based on aspect ratio, window overlap area and/or a global maximal classification.
Abstract:
Methods and systems for preventing vehicle theft. A video stream of a parking area wherein a vehicle is parked can be captured, the video stream provided by a theft notification service to which the vehicle is pre-registered. The vehicle in the video stream can be identified. The video stream is then analyzed to detect motion with respect to the vehicle. An alert can then be generated if motion is detected.
Abstract:
A spatiotemporal system and method for parking occupancy detection. The system can generally include suitable image acquisition, processing, transmission and data storage devices configured to carry out the method which includes generating and processing spatiotemporal images to detect the presence of an object in a region of interest, such as a vehicle in a parking stall.
Abstract:
A method for determining parking availability includes receiving video data from a sequence of frames taken from an image capture device monitoring a parking area. The method includes detecting at least one object located in the parking area. The method includes determining boundaries of the parking area. The boundaries include at least an inner boundary relative to the image capture device and an outer boundary relative to the image capture device. The outer boundary is substantially parallel to the inner boundary. The method further includes computing a length of at least one of the object and a space between objects using an object pixel for each of the inner and outer boundaries. Using the computed length, The method includes determining a parking availability in the parking area. The method includes outputting a notice of the parking availability to a user.
Abstract:
A method and system for determining one or more dimension estimations for a vehicle. A sequence of image frames of a vehicle is received, and a digital representation of the vehicle is extracted from each image in the sequence of image frames. A bounding box is determined for the vehicle based upon the extracted digital representation for each digital representation of the vehicle and at least one dimension of the vehicle is estimated based upon the determined bounding box. An indication of the at least one estimated dimension is output. The indication of at least one estimated dimension is transferred as an input to a comparison technique for further processing the indication of the at least one estimated dimension. The comparison technique can include a parking determination process configured to determine a recommended spot for the vehicle based upon the indication of the at least one estimated dimension.
Abstract:
Hybrid methods, systems and processor-readable media for video and vision based access control for parking occupancy determination. One or more image frames of a parking area of interest can be acquired from among two or more regions of interest defined with respect to the parking area of interest. The regions of interest can be analyzed for motion detection or image content change detection. An image content classification operation can be performed with respect to a first region of interest among the regions of interest based on the result of the image content change detection. An object tracking operation can then be performed with respect to a second region of interest among the regions of interest if the result of the image content classification operation indicates a presence of one or more objects of interest within the parking area of interest.
Abstract:
Methods and systems for training a parked vehicle detector. Video data regarding one or more parking sites can be captured. Positive training samples can then be collected from the video data based on a combination of one or more automated computing methods and human-input auxiliary information. Additionally, negative training samples can be collected from the video data based on automated image analyses with respect to the captured video data. The positive training samples and the negative training samples can then be used to train, re-train or update one or more parked vehicle detectors with respect to the parking site(s) for use in managing parking at the parking site(s).