Abstract:
If an optical path length of an optical system is reduced and a length of a laser light on an irradiation surface is increased, there occurs curvature of field which is a phenomenon that a convergent position deviates depending on an incident angle or incident position of a laser light with respect to a lens. To avoid this phenomenon, an optical element having a negative power such as a concave lens or a concave cylindrical lens is inserted to regulate the optical path length of the laser light and a convergent position is made coincident with a irradiation surface to form an image on the irradiation surface.
Abstract:
The present invention is characterized in that by laser beam being slantly incident to the convex lens, an aberration such as astigmatism or the like is occurred, and the shape of the laser beam is made linear on the irradiation surface or in its neighborhood. Since the present invention has a very simple configuration, the optical adjustment is easier, and the device becomes compact in size. Furthermore, since the beam is slantly incident with respect to the irradiated body, the return beam can be prevented.
Abstract:
The present invention is characterized in that by laser beam being slantly incident to the convex lens, an aberration such as astigmatism or the like is occurred, and the shape of the laser beam is made linear on the irradiation surface or in its neighborhood. Since the present invention has a very simple configuration, the optical adjustment is easier, and the device becomes compact in size. Furthermore, since the beam is slantly incident with respect to the irradiated body, the return beam can be prevented.
Abstract:
The present invention is to provide a beam homogenizer, a laser irradiation apparatus, and a method for manufacturing a semiconductor device, which can suppress the loss of a laser beam and form a beam spot having homogeneous energy distribution constantly on an irradiation surface without being affected by beam parameters of a laser beam. A deflector is provided at an entrance of an optical waveguide or a light pipe used for homogenizing a laser beam emitted from a laser oscillator. A pair of reflection planes of the deflector is provided so as to have a tilt angle to an optical axis of the laser beam, whereby the entrance of the optical waveguide or the light pipe is expanded. Accordingly, the loss of the laser beam can be suppressed. Moreover, by providing an angle adjusting mechanism to the deflector, a beam spot having homogeneous energy distribution can be formed at an exit of the optical waveguide.
Abstract:
A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
Abstract:
If an optical path length of an optical system is reduced and a length of a laser light on an irradiation surface is increased, there occurs curvature of field which is a phenomenon that a convergent position deviates depending on an incident angle or incident position of a laser light with respect to a lens. To avoid this phenomenon, an optical element having a negative power such as a concave lens or a concave cylindrical lens is inserted to regulate the optical path length of the laser light and a convergent position is made coincident with a irradiation surface to form an image on the irradiation surface.