Abstract:
Example embodiments provide a compound of Chemical Formula 1, and an organic photoelectric device, an image sensor, and an electronic device including the same.
Abstract:
A compound for an organic photoelectric device is represented by Chemical Formula 1. An organic photoelectric device includes a first electrode and a second electrode facing each other, and an active layer including the compound represented by Chemical Formula 1 between the first electrode and the second electrode.
Abstract:
An electronic device may include at least one image sensor that includes a plurality of photo-sensing devices, a photoelectric device on one side of the semiconductor substrate and configured to selectively sense first visible light, and a plurality of color filters on separate photo-sensing devices. The plurality of color filters may include a first color filter configured to selectively transmit a second visible light that is different from the first visible light and a second color filter transmitting first mixed light including the second visible light. The electronic device may include multiple arrays of color filters. The electronic device may include different photoelectric devices on the separate arrays of color filters. The different photoelectric devices may be configured to sense different wavelength spectra of light.
Abstract:
A compound for an organic photoelectric device is represented by Chemical Formula 1, and an organic photoelectric device, an image sensor and an electronic device include the same.
Abstract:
A compound for an organic photoelectric device is represented by Chemical Formula 1, and an organic photoelectric device, an image sensor and an electronic device include the same.
Abstract:
An organic photoelectronic device includes a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, the active layer including a heterojunction of a p-type semiconductor and an n-type semiconductor, the p-type semiconductor including a compound represented by Chemical Formula 1.
Abstract:
A photoelectric device includes a first electrode and a second electrode facing each other, a photoelectric conversion layer between the first electrode and the second electrode and including a light absorbing material configured to selectively absorb first visible light including one of visible light in a blue wavelength region of greater than or equal to about 380 nm and less than about 500 nm, visible light in a green wavelength region of about 500 nm to about 600 nm, and visible light in a red wavelength region of greater than about 600 nm and less than or equal to about 700 nm, and a plurality of nanostructures between the first electrode and the photoelectric conversion layer and configured to selectively reflect the first visible light.
Abstract:
A compound of Chemical Formula 1, and an organic photoelectric device, an image sensor, and an electronic device including the same are disclosed: In Chemical Formula 1, each substituent is the same as defined in the detailed description.
Abstract:
An organic photoelectric device includes a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, wherein the active layer includes an n-type semiconductor compound that is transparent in a visible ray region and represented by Chemical Formula 1, and a p-type semiconductor compound having a maximum absorption wavelength in a wavelength region of about 500 nm to about 600 nm of a visible ray region.
Abstract:
An organic photoelectronic device includes a first electrode and a second electrode facing each other, photoelectronic conversion layer between the first electrode and the second electrode and including a first material and a second material providing a p-n junction and an interlayer being adjacent to the first electrode between the first electrode and the photoelectronic conversion layer and including a third material, wherein the first material and the third material are an organic material having each energy bandgap of about 1.7 eV to about 2.3 eV, and an image sensor including the same is provided.