Abstract:
A compound is represented by Chemical Formula 1: X1-T-X2 wherein T is a substituted or unsubstituted fused thiophene moiety, and each of X1 and X2 are independently an organic group including an alkenylene group and an electron withdrawing group.
Abstract:
An organic photoelectronic device includes a first electrode and a second electrode facing each other and a light-absorption layer between the first electrode and the second electrode and including a photoelectric conversion region including a p-type light-absorbing material and an n-type light-absorbing material and a doped region including an exciton quencher and at least one of the p-type light-absorbing material and the n-type light-absorbing material, wherein at least one of the p-type light-absorbing material and the n-type light-absorbing material selectively absorbs a part of visible light, and an image sensor includes the same.
Abstract:
Example embodiments provide a compound of Chemical Formula 1, and an organic photoelectric device, an image sensor, and an electronic device including the same.
Abstract:
Example embodiments relate to an organic photoelectronic device that includes a first electrode, a light-absorption layer on the first electrode and including a first p-type light-absorption material and a first n-type light-absorption material, a light-absorption auxiliary layer on the light-absorption layer and including a second p-type light-absorption material or a second n-type light-absorption material that have a smaller full width at half maximum (FWHM) than the FWHM of the light absorption layer, a charge auxiliary layer on the light-absorption auxiliary layer, and a second electrode on the charge auxiliary layer, and an image sensor including the same.
Abstract:
An organic photoelectric device includes a first electrode and a second electrode facing each other and a photoelectric conversion layer between the first electrode and the second electrode, wherein the photoelectric conversion layer includes a p-type semiconductor compound and an n-type semiconductor compound, and the organic photoelectric device satisfies Equation 1, and has external quantum efficiency (EQE) of greater than or equal to about 40% at −3 V.
Abstract:
An organic photoelectronic device includes a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, the active layer including a first compound having a maximum absorption wavelength of about 500 nm to about 600 nm in a visible ray region and a transparent second compound in a visible ray region.
Abstract:
An organic electroluminescence device includes a support substrate, a first transparent electrode on the support substrate, an organic light-emitting layer on the first transparent electrode, a second transparent electrode on the organic light-emitting layer, and a high refractive index layer arranged between the support substrate and the first transparent electrode, having at least one layer having a refractive index greater than or equal to a refractive index of the support substrate, having a light dispersion portion for dispersing incident light from the organic light-emitting layer, and having a planar surface contacting the first transparent electrode.
Abstract:
An ionic salt includes a polyvalent ion (a) having a metal cluster structure or a metal oxide cluster structure and an organic ion (b), a radiation-sensitive resist composition including the ionic salt, and a pattern forming method, wherein the polyvalent ion (a) includes at least one metal atom selected from the group consisting of tin, indium, antimony, tellurium, and bismuth, and the organic ion (b) is at least one selected from the group consisting of: a carboxylate anion having 4 or more carbon atoms; a sulfonate anion having 4 or more carbon atoms; a phosphonate anion having 4 or more carbon atoms; a phenoxide anion having 6 or more carbon atoms; an iodonium cation having 4 or more carbon atoms; a sulfonium cation having 4 or more carbon atoms; an ammonium cation having 4 or more carbon atoms; and a pyridinium cation having 5 or more carbon atoms.
Abstract:
A heterocyclic compound represented by Formula 1: wherein, in Formula 1, groups and variables are the same as described in the specification.
Abstract:
An organic photoelectronic device includes a first electrode and a second electrode facing each other, and first and second photoelectronic conversion layers between the first electrode and the second electrode. The first and second photoelectronic conversion layers include a p-type semiconductor and an n-type semiconductor. The first photoelectronic conversion layer has a first composition ratio (p1/n1) of the p-type semiconductor relative to the n-type semiconductor, the second photoelectronic conversion layer has a second composition ratio (p2/n2) of the p-type semiconductor relative to the n-type semiconductor, and the first composition ratio (p1/n1) is greater than the second composition ratio (p2/n2).