Abstract:
An apparatus and method for manufacturing a thin film encapsulation includes: a first cluster configured to form a first inorganic layer on a display substrate using a sputtering process; a second cluster configured to form a first organic layer on the first inorganic layer on the display substrate using a monomer deposition process; and a third cluster configured to form a second inorganic layer on the first organic layer on the display substrate using a chemical vapor deposition (CVD) process or a plasma enhanced chemical vapor deposition (PECVD) process.
Abstract:
A vapor deposition apparatus for depositing a thin film on a substrate, by which a deposition process is efficiently performed and deposition film characteristics are easily improved, and a vapor deposition apparatus including: a stage onto which a substrate is disposed; and a supply unit disposed to face the substrate and having a main body member and a nozzle member disposed on one surface of the main body member facing the substrate, to sequentially supply a plurality of gases towards the substrate, and a method of manufacturing an organic light-emitting display apparatus using the same.
Abstract:
A vapor deposition apparatus for providing a deposition film on a substrate, the vapor deposition apparatus includes a plurality of first nozzle parts which injects a first raw material toward the substrate; a plurality of second nozzle parts which is alternately disposed together with the plurality of first nozzle parts and injects a second raw material toward the substrate; a diffuser unit which distributes the second raw material to the plurality of second nozzle parts; and a supply unit which supplies the second raw material to the diffuser unit.
Abstract:
A deposition apparatus for performing a deposition process by using a mask with respect to a substrate, the deposition apparatus includes a chamber, a support unit in the chamber, the support unit including first holes and being configured to support the substrate, a supply unit configured to supply at least one deposition raw material toward the substrate, and movable alignment units through the first holes of the support unit, the alignment units being configured to support the mask and to align the mask with respect to the substrate.
Abstract:
A deposition apparatus is configured to form a deposition layer on a substrate. The deposition apparatus includes a deposition source configured to face a first side of the substrate and to spray one or more depositing materials toward the substrate, a cooling stage configured to support a second side of the substrate that is opposite from the first side of the substrate, and a hardening unit configured to harden the one or more depositing materials sprayed from the deposition source and that have reached the substrate. A method of forming a thin film deposition layer on a substrate by using a deposition apparatus is also provided. The method includes spraying one or more depositing materials toward the substrate by using a deposition source of the deposition apparatus while the substrate is on a cooling stage of the deposition apparatus.
Abstract:
A vapor deposition apparatus for depositing a thin film on a substrate, by which a deposition process is efficiently performed and deposition film characteristics are easily improved, and a vapor deposition apparatus including: a stage onto which a substrate is disposed; and a supply unit disposed to face the substrate and having a main body member and a nozzle member disposed on one surface of the main body member facing the substrate, to sequentially supply a plurality of gases towards the substrate, and a method of manufacturing an organic light-emitting display apparatus using the same.
Abstract:
Provided is a vapor deposition apparatus including: a plasma generator configured to change at least a portion of a first raw material gas into a radical form; a corresponding surface corresponding to the plasma generator; a reaction space between the plasma generator and the corresponding surface; and an insulating member separated from, and surrounding the plasma generator.
Abstract:
A deposition apparatus is configured to form a deposition layer on a substrate. The deposition apparatus includes a deposition source configured to face a first side of the substrate and to spray one or more depositing materials toward the substrate, a cooling stage configured to support a second side of the substrate that is opposite from the first side of the substrate, and a hardening unit configured to harden the one or more depositing materials sprayed from the deposition source and that have reached the substrate. A method of forming a thin film deposition layer on a substrate by using a deposition apparatus is also provided. The method includes spraying one or more depositing materials toward the substrate by using a deposition source of the deposition apparatus while the substrate is on a cooling stage of the deposition apparatus.
Abstract:
A flat panel display device provides a sealing structure for comprising and sealing a display unit disposed in a first region on a substrate. The display unit includes the first region and a second region, and a barrier is disposed in the first region on the substrate, on an outer side of the display unit, and adjacent to the second region. The sealing structure contacts the barrier, and includes at least one first layer of an inorganic material and at least one second layer of an organic material. A method of manufacturing the flat panel display device is also disclosed.
Abstract:
A vapor deposition apparatus for forming a deposition layer on a substrate, the vapor deposition apparatus includes a supply unit configured to receive a first source gas, a reaction space connected to the supply unit, a plasma generator in the reaction space, a first injection unit configured to inject a deposition source material to the substrate, the deposition source material including the first source gas, and a filament unit in the reaction space, the filament unit being connected to a power source.