Abstract:
Provided is an organic light-emitting display device that includes: a substrate; a first wiring that extends in a first direction on the substrate and comprises first and second portions with an opening therebetween; a second wiring that overlaps with the opening and extends in a second direction that crosses the first direction; an insulating film that covers the first wiring and the second wiring and comprises a first contact hole that exposes the first portion of the first wiring and a second contact hole that exposes the second portion; and a bridge electrode that is formed on the insulating film, is electrically connected to the first and second portions through the first and second contact holes, and comprises a transparent conductive oxide and a metal.
Abstract:
An organic light emitting display device includes a scan line, a data line, a power supply line, and a pixel. The scan line extends in one direction. The data line crosses the scan line. The power supply line crosses the scan line and the data line. The pixel is electrically coupled to the scan line, the data line, and the power supply line. The pixel includes an organic light emitting diode including a first electrode on a substrate, an organic layer on the first electrode, and a second electrode on the organic layer. The pixel further includes at least two domains configured to radiate light in directions different from each other.
Abstract:
A high-speed flat panel display has thin film transistors in a pixel array portion in which a plurality of pixels are arranged and a driving circuit portion for driving the pixels of the pixel array portion, which have different resistance values than each other or have different geometric structures than each other. The flat panel display comprises a pixel array portion where a plurality of pixels are arranged, and a driving circuit portion for driving the pixels of the pixel array portion. The thin film transistors in the pixel array portion and the driving circuit portion have different resistance values in their gate regions or drain regions than each other, or have different geometric structures than each other. One thin film transistor has a zigzag shape in its gate region or drain region or has an offset region.
Abstract:
There is provided a flexible display device including a display panel for displaying an image, and a window substrate covering the touch screen panel, the widow substrate including a flexible base layer including an externally facing first surface, and a second surface opposite the first surface and facing the display panel, a hard coating layer having a hardness that is larger than that of the base layer, and including a plurality of coating tiles on the first surface of the base layer that are spaced to have a gap between adjacent ones of the coating tiles, and a self-healing coating layer including a self-healing material and covering the hard coating layer on the base layer.
Abstract:
An exemplary embodiment provides a cover window for a display device, including: a first film; a second film disposed on the first film; and an adhesive layer disposed between the first film and the second film, wherein the adhesive layer includes an elastic polymer, and wherein a ratio of a thickness of the second film to a thickness of the first film is in a range of 0.2 to 5.
Abstract:
A stretchable display device, including a stretchable display panel to display images; and a window on a touch sensing layer, the window including a soft part and a plurality of hard parts attached on a surface of the soft part, the hard parts including an attachment portion attached to the soft part and a non-attachment portion not attached to the soft part.
Abstract:
An adhesive member for a display device is disclosed. The adhesive member may include an adhesive film configured to roll along a rolling axis. The adhesive film may include an adhesive portion including a plurality of adhesive lines. The plurality of adhesive lines may not be orthogonal to the rolling axis.
Abstract:
A cover window includes: a base film disposed on a display panel of a display device which displays an image with light; and porous nanoparticles embedded in the base film at a side of the base film opposite to that at which the display panel is disposed.
Abstract:
A cover window for a display device includes: a first film; a second film on the first film; and an adhesive layer between the first film and the second film. The adhesive layer has a lap shear modulus in a range of 20 kPa to 50 kPa.
Abstract:
A flexible display device including a display panel configured to display an image, a touch screen panel on the display panel, and a window substrate covering the touch screen panel. The window substrate includes: a flexible base layer including a first surface facing an outside and a second surface facing the display panel in an opposite direction to the first surface; a first coating layer having hardness higher than that of the base layer and having a plurality of first coating tiles arranged on the first surface of the base layer thereof, at a first gap from each other; and a second coating layer having hardness higher than that of the base layer and having a plurality of second coating tiles arranged on a layer different from the first surface of the base layer thereof, at a second gap from each other.