Abstract:
An exemplary embodiment of the present invention discloses a method of manufacturing a touch panel, the method including, forming a plurality of sensing cells in a first region of a substrate, forming an insulating interlayer on the plurality of sensing cells, removing at least a portion of the insulating interlayer to form contact holes exposing the plurality of sensing cells, and forming a connection pattern and a transparent conductive pattern on the insulating interlayer simultaneously, wherein the connection pattern is electrically connected to adjacent sensing cells, and the transparent conductive pattern is disposed in a second region of the substrate outside of the first region.
Abstract:
A two-dimensional/three-dimensional switchable display apparatus includes: a display panel; a first substrate disposed on the display panel; a first electrode layer disposed on the first substrate and including a plurality of first electrodes; a second substrate disposed on the first substrate; a second electrode layer disposed on the second substrate and including a plurality of second electrodes; and a liquid crystal layer disposed between the first and second substrates. A plurality of lens units are formed in association with a first position of the liquid crystal layer when a lens forming voltage profile is applied to the first electrodes and a common voltage is applied to the second electrodes. When the common voltage is applied to the first electrodes and the lens forming voltage is applied to the second electrodes, the plurality of lens units are formed in association with a second position spaced apart from the first position.
Abstract:
A liquid crystal lens panel includes a first substrate, a second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The first substrate includes a first base substrate and a plurality of first electrodes disposed on the first base substrate. The second substrate includes a second base substrate disposed to face the first base substrate, the second substrate further including a plurality of second electrodes disposed on the second base substrate. Each of the first base substrate and the second base substrate are rectilinearly shaped to comprise corresponding first sides and second sides, the plurality of first electrodes and the plurality of second electrodes are inclined with respect to the corresponding first sides or second sides, and the plurality of first electrodes comprise a first inclination angle different from a second inclination angle associated with the plurality of second electrodes.
Abstract:
A new 2D/3D switchable display apparatus matches a polarization direction of light output from a 2D image display panel with a rubbing direction of a lower alignment layer of a liquid crystal lens, and tilts a rubbing direction of an upper alignment layer of the liquid crystal lens and a direction of a polarization axis of a polarizer at a predetermined angle, thereby reducing a loss of light passing through the liquid crystal lens, making it possible to improve luminance of images, improve the quality of 3D images in the horizontal direction, prevent or reduce color separation and moire phenomena, and reduce the manufacturing cost.
Abstract:
A new 2D/3D switchable display apparatus matches a polarization direction of light output from a 2D image display panel with a rubbing direction of a lower alignment layer of a liquid crystal lens, and tilts a rubbing direction of an upper alignment layer of the liquid crystal lens and a direction of a polarization axis of a polarizer at a predetermined angle, thereby reducing a loss of light passing through the liquid crystal lens, making it possible to improve luminance of images, improve the quality of 3D images in the horizontal direction, prevent or reduce color separation and moire phenomena, and reduce the manufacturing cost.
Abstract:
A display panel displays a first image during a first subframe and a second image during a second subframe. A display panel driver provides the first and second images to the display panel. A light source part provides light to the display panel. A light converting element is disposed between the display panel and the light source part and includes a barrier part and a lens part disposed on the barrier part. The barrier part has a plurality of independently controllable barrier groups. A position detecting part determines a position of a viewer. A barrier driver controls the barrier part to selectively transmit light from the light source part based on the viewer's position. A single barrier group includes a plurality of barriers, and a single barrier includes a plurality of sub-barriers.