Abstract:
A method of manufacturing an organic light emitting display device, including: forming a first film of an organic material, and having first and second surfaces facing each other and a third surface perpendicular to the first and second surfaces; forming a second film on the first film to cover the second and third surfaces of the first film; forming an organic light emitting unit on the second film; forming a third film on the second film to cover the organic light emitting unit; forming a fourth film of an organic material on the third film and having fourth and fifth surfaces facing each other and the fifth surface facing the third film; combining the second support substrate and the first support substrate such that the fifth surface faces the third film; detaching the second support substrate from the fourth surface; and detaching the first support substrate from the first surface.
Abstract:
A rollable display apparatus includes a rolling drum; and a flexible display panel comprising an end bonded to the rolling drum, the flexible display panel being windable around an outer circumferential surface of the rolling drum, the flexible display panel including a flexible substrate including a first surface on which a display device is arranged; and a first protection film over the first surface of the flexible substrate, the first protection film including a first layer including an elastic polymer, and a second layer on the first layer and having a smaller surface frictional force than the first layer, and the second layer includes a plurality of first grooves each indented in a depth direction of the second layer from a surface of the second layer.
Abstract:
Provided is a method of manufacturing a polyimide substrate. An acid solution is provided to a glass substrate to remove a first cation included in the glass substrate, and a source solution including polyamic acid is provided to the glass substrate. Then, the polyamic acid is cured to form a polyimide substrate on the glass substrate, and the polyimide substrate is separated from the glass substrate.
Abstract:
Provided is a method of manufacturing a flexible display apparatus, the method including forming a sacrificial layer on a support substrate; forming a first material layer having a higher hydrogen concentration than the sacrificial layer on the sacrificial layer; forming a second material layer, preventing hydrogen diffusion from the first material layer to a flexible substrate, on the first material layer; forming the flexible substrate on the second material layer; forming a display layer on the flexible substrate; and irradiating a laser onto the support substrate to delaminate the sacrificial layer from the first material layer.
Abstract:
A flexible display and method of manufacturing the same are disclosed. In one aspect, the method includes forming a metal peroxide layer over a supporting substrate, forming a metal layer over the metal peroxide layer and forming a flexible substrate over the metal layer. The method also includes forming a display layer over the flexible substrate, irradiating the supporting substrate with laser light in a direction from the supporting substrate to the flexible substrate so as to form a metal oxide layer and separating the supporting substrate from the flexible substrate with the metal oxide layer as a boundary between the supporting substrate and the flexible substrate.
Abstract:
A display device includes a display module, a plurality of support bars disposed on a rear surface of the display module, a roller which is connected to one end of the display module and around which the display module and part of the plurality of support bars are wound, and a housing which accommodates the display module, the plurality of support bars, and the roller. A gap between the plurality of support bars varies according to areas of the display module.
Abstract:
A display device includes: a flexible substrate; a plurality of conductive lines on the flexible substrate; a thin film transistor connected to the plurality of conductive lines; and an organic light emitting element connected to the thin film transistor. As a curvature of an area of the flexible substrate increases, a width or a thickness of each of the conductive lines increases.
Abstract:
A rollable display device includes: a window member; a first pressure sensitive adhesive member arranged under the window member; a display module detachable from and attachable to the window member by the first pressure sensitive adhesive member; a housing having a groove through which the window member, the first pressure sensitive adhesive member, and the display module are configured to enter and exit from the housing; a first rotation member on which the window member and the first pressure sensitive adhesive member are rollable or slidable; and a second rotation member on which the display module is rollable or slidable.
Abstract:
A flexible display device includes: a flexible substrate; a thin-film transistor on the flexible substrate; a passivation film covering the thin-film transistor; and a display element on the passivation film and electrically connected to the thin-film transistor. The passivation film includes a material exhibiting a shear-thickening phenomenon.
Abstract:
A flexible display device includes: a flexible substrate; a thin-film transistor on the flexible substrate; a passivation film covering the thin-film transistor; and a display element on the passivation film and electrically connected to the thin-film transistor. The passivation film includes a material exhibiting a shear-thickening phenomenon.