Abstract:
A liquid crystal display (“LCD”) device and a method of manufacturing the LCD device, the LCD device including: a substrate including a display area and a non-display area; a blue light blocking filter on the substrate; a plurality of color pattern layers spaced apart from one another in a plan view; a black matrix among the plurality of color pattern layers in a plan view; a planarization layer on the color pattern layer and the black matrix; and a polarizer on the planarization layer. The color pattern layer includes: a red color conversion unit on the blue light blocking filter, the red color conversion unit converting a light into a light having a red wavelength; and a green color conversion unit on the blue light blocking filter, the green color conversion unit converting a light into a light having a green wavelength, and the red color conversion unit and the green color conversion unit include wavelength converting particles.
Abstract:
A liquid crystal display according to an exemplary embodiment includes: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; a roof layer overlapping the pixel electrode; and a liquid crystal layer disposed in a plurality of microcavities between the pixel electrode and the roof layer. The roof layer includes two partitions disposed at respective sides of a microcavity selected from the plurality of microcavities and facing each other and a first inlet part and a second inlet part facing each other in a direction crossing a direction in which the two partitions face each other. A distance between the two partitions is shorter in the first inlet part than in a center part of the microcavity, and the distance between the two partitions is shorter in the second inlet part than in the center part of the microcavity.
Abstract:
A thin film transistor substrate, a display device including the same, and a method of manufacturing a thin film transistor substrate. The thin film transistor substrate includes: a base plate including a first area and a second area; a nano uneven pattern formed on one side of the base plate in the first area; a wire grid pattern formed on the ne side of the base plate in the second area; a gate electrode disposed on and overlapping the wire grid pattern; and one of a source electrode and a drain electrode disposed on the gate electrode and overlapping the wire grid pattern.
Abstract:
A method for manufacturing a display device includes forming a plurality of light blocking patterns on a first surface of a transparent substrate, wherein a first light blocking pattern of the plurality of light blocking patterns has a different line width than a second light blocking pattern of the plurality of light blocking patterns. An insulating layer is formed on the first surface of the transparent substrate and the light blocking patterns. A conductive layer is formed on the insulating layer. A photo-resist layer is formed on the conductive layer. The photo-resist layer is exposed with ultraviolet rays through a second surface of the transparent substrate, wherein the first and second surfaces of the transparent substrate are opposite to each other. The photo-resist layer is developed. The conductive layer is etched using the photo-resist layer as a mask. The photo-resist layer is removed.
Abstract:
A liquid crystal display device includes: an insulating substrate, a thin film transistor positioned on the insulating substrate, a pixel electrode connected to the thin film transistor, a pillar portion positioned on the pixel electrode, a common electrode positioned on the pillar portion, a liquid crystal layer filling in a cavity positioned between the pixel electrode, the pillar portion, and the common electrode and containing liquid crystal molecules, and a roof layer and an overcoat positioned on the common electrode, wherein a cross section of the cavity in a column direction is reversely tapered.
Abstract:
A complex substrate for a display apparatus, the complex substrate includes a lower base substrate including convex and concave patterns, the convex and concave patterns being integral with an upper side of the lower base substrate, a planarizing layer on the lower base substrate, the planarizing layer being integral with the convex and concave patterns, and the planarizing layer having different refractivity from the lower base substrate, and a wire grid pattern on the planarizing layer, the wire grid pattern including a plurality of nano wire metal patterns, each of the nano wire metal patterns having a width of no more than a micrometer.
Abstract:
A liquid crystal display device includes: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected with the thin film transistor; and a roof layer disposed to face the pixel electrode, wherein a plurality of microcavities having respective liquid crystal injection holes are formed between the pixel electrode and the roof layer, and the microcavities are filled with electrically orientatable liquid crystal molecules, wherein a light blocking layer disposed adjacent to the injection holes is formed and covering the thin film transistor, wherein the light blocking layer is covered by a passivation layer.
Abstract:
A manufacturing method of a thin film transistor array panel includes forming a gate line, forming a gate insulating layer on the gate line, forming a data line including a drain electrode on the gate insulating layer, forming a passivation layer on the gate insulating layer, the data line, and the drain electrode, forming a negative photosensitive organic layer on the passivation layer, heat treating the negative photosensitive organic layer to form an insulating layer including a first portion, and a second portion that is thinner than the first portion, and forming a pixel electrode, a first contact assistant, and a second contact assistant on the insulating layer. The pixel electrode is disposed on the first portion, the first and second contact assistants are disposed on the second portion, and the thickness of the second portion is less than about 1.5 micrometers (μm).
Abstract:
A display device including a plurality of sub-display panels, wherein each of the sub-display panels includes: a first substrate; a plurality of transistors on the first substrate; a capping member arranged along an edge of the first substrate to surround the transistors; a second substrate on the capping member and the transistors; and a plurality of light emitting elements on the second substrate and electrically connected to the transistors, respectively.
Abstract:
In a method of manufacturing a display apparatus, the method includes: providing a first mother substrate; forming, on the first mother substrate, a pixel layer comprising a light-emitting device; providing a second mother substrate; forming, on the second mother substrate, a diffraction pattern layer configured to diffract light emitted from the light-emitting device; forming a bonded substrate structure by bonding the first mother substrate, on which the pixel layer is formed, and the second mother substrate, on which the diffraction pattern layer is formed; forming, by cutting the bonded substrate structure, a plurality of unit substrate structures each comprising a first substrate on which the pixel layer is formed and a second substrate on which the diffraction pattern layer is formed; forming a protection member on the diffraction pattern layer; and removing a foreign material on the diffraction pattern layer with the protection member.