Abstract:
The display panel includes an upper display substrate including a plurality of pixel areas and a light blocking area, a lower display substrate. The upper display substrate includes a base substrate, a barrier part overlapping the light blocking area and disposed on the base substrate, a light blocking layer including a first light blocking portion disposed on the barrier part and a second light blocking portion disposed on the same layer as the barrier part to respectively overlap the pixel areas, a reflection layer including a first reflection portion disposed on the first light blocking portion and a second reflection portion disposed on the second light blocking portion, and a light control layer overlapping the pixel areas and disposed on the reflection layer. A plurality of openings passing through the second light blocking portion and the second reflection portion are defined in each of the pixel areas.
Abstract:
Disclosed is a liquid crystal composition including at least one compound selected from the group consisting of a liquid crystal compound expressed by Formula 1-1 and a liquid crystal compound expressed by Formula 1-2; at least one compound selected from the group consisting of a self-alignment compound expressed by Formula 2-1 and a self-alignment compound expressed by Formula 2-2; and at least one compound selected from the group consisting of a reactive mesogen expressed by Formula 3-1, a reactive mesogen expressed by Formula 3-2, a reactive mesogen expressed by Formula 3-3, a reactive mesogen expressed by Formula 3-4, and a reactive mesogen expressed by Formula 3-5. The liquid crystal composition also has negative dielectric anisotropy.
Abstract:
A liquid crystal display includes: a first insulation substrate; a gate line and a data line formed on the first insulation substrate; a first electrode and a second electrode formed on the gate line and the data line and overlapping each other via an insulating layer interposed therebetween; a second insulation substrate facing the first insulation substrate; and a chiral dopant inserted between the first insulation substrate and the second insulation substrate. A content of the chiral dopant may be within about 1%, and liquid crystal molecules of a liquid crystal layer may be twisted with a pitch of about 10 μm to about 100 μm by the chiral dopant.
Abstract:
A 3D image display device includes: a liquid crystal (LC) display panel including, a first array substrate (AS) including a gate line (GL) extending in a first direction (FD), a data line (DL) extending in a second direction (SD) substantially perpendicular to the FD, and a pixel electrode (PE) connected to the GL and the DL and having first branch electrode portions (FBEPs) having a first width, each of the FBEPs being spaced from each other by a first interval substantially ≧the first width, and a LC lens panel including a second AS including lens electrodes (LEs) extending in a third direction (TD) tilted with respect to the SD by a first angle having an absolute value ≧about 5° and ≦about 15°. Each of the FBEPs extends in a fourth direction having a first tilting angle with respect to the TD by about 45° or about 135°.
Abstract:
A display device and method of manufacturing same includes: a display panel having a pixel area and a peripheral area adjacent to the pixel area, a light control layer disposed on the display panel and at least partially overlapping the pixel area, a light blocking portion at least partially overlapping the peripheral area, and a protective layer disposed between the light control layer and the light blocking portion.
Abstract:
A display device and method of manufacturing same includes: a display panel having a pixel area and a peripheral area adjacent to the pixel area, a light control layer disposed on the display panel and at least partially overlapping the pixel area, a light blocking portion at least partially overlapping the peripheral area, and a protective layer disposed between the light control layer and the light blocking portion.
Abstract:
A liquid crystal display includes: a first substrate; a gate line and a data line disposed on the first substrate; a passivation layer disposed on the gate line and the data line; a first electrode and a second electrode disposed on the passivation layer; and a first insulating layer interposed between the first and second electrodes, where the first and second electrodes overlap each other via the first insulating layer, the second electrode includes a plurality of branch electrodes, and an end portion of the plurality of branch electrodes includes a first side portion and a second side portion extending parallel to the data line, and an oblique portion which connects the first side portion and the second side portion to each other and forms a first angle of less than 90 degrees with an extending line of the first side portion.
Abstract:
A display panel is provided. A first substrate includes a display area and a peripheral area. The peripheral area surrounds the display area. A second substrate is disposed on the first substrate. The second substrate faces the first substrate along a first direction. A liquid crystal layer is interposed between the first substrate and the second substrate. A multi-layered sealant is disposed on the peripheral area of the first substrate. The multi-layered sealant surrounds the liquid crystal layer. The multi-layered sealant includes a first sealant layer including an acrylate resin having a functional group having at least 3 carbon atoms, and a second sealant layer including an epoxy resin having a (meth)arcylate group.
Abstract:
A liquid crystal display includes: a first substrate; a gate line and a data line disposed on the first substrate; a passivation layer disposed on the gate line and the data line; a first electrode and a second electrode disposed on the passivation layer; and a first insulating layer interposed between the first and second electrodes, where the first and second electrodes overlap each other via the first insulating layer, the second electrode includes a plurality of branch electrodes, and an end portion of the plurality of branch electrodes includes a first side portion and a second side portion extending parallel to the data line, and an oblique portion which connects the first side portion and the second side portion to each other and forms a first angle of less than 90 degrees with an extending line of the first side portion.
Abstract:
A liquid crystal display includes: a first substrate; a gate line on the first substrate; a gate insulating layer on the gate line; a semiconductor layer on the gate insulating layer; a data line and a drain electrode on the semiconductor layer; a passivation layer covering the data line and the drain electrode; a common electrode on the passivation layer; an interlayer insulating layer on the common electrode; a pixel electrode on the interlayer insulating layer; an additional insulating layer on the pixel electrode; a second substrate opposite to the first substrate; and a black matrix on the second substrate, and including a vertical portion covering the data line and a horizontal portion covering the gate line and the drain electrode, where an empty portion is defined through the additional insulating layer in a portion corresponding to the black matrix.