Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A touch sensor includes: a plurality of first sensor electrode columns disposed in a sensing area, the plurality of first sensor electrode columns each including one or more first sensor electrodes; a plurality of second sensor electrode columns alternately disposed with the first sensor electrode columns in the sensing area, the plurality of second sensor electrode columns each including a plurality of second sensor electrodes having a length defined by a longitudinal axis and a width extending in a direction across the length; a plurality of lines connected to the first sensor electrode columns and the second sensor electrode columns; and a pad unit including a plurality of pads connected to the lines, wherein at least some of the second sensor electrodes have a width that varies along the longitudinal axis of its respective second electrodes.
Abstract:
A touch screen including a substrate that includes an active area and a non-active area adjacent to the active area, the active area including at least one fingerprint recognition area; touch sensing electrodes including first sensing electrodes arranged in the active area, and at least one second sensing electrode arranged in the fingerprint recognition area, the second sensing electrode configured for sensing a touch and recognizing a fingerprint; and a pad portion provided with a plurality of pads which are electrically connected to respective sensing electrodes, wherein the at least one second sensing electrode includes: a plurality of sub electrodes extending in a direction inclined with respect to an edge portion of the active area; and a plurality of fingerprint recognition lines connecting the sub electrodes to the pad portion, and the fingerprint recognition lines arranged in a same fingerprint recognition area extend in a same direction.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A touch sensor includes: a plurality of first sensor electrode columns disposed in a sensing area, the plurality of first sensor electrode columns each including one or more first sensor electrodes; a plurality of second sensor electrode columns alternately disposed with the first sensor electrode columns in the sensing area, the plurality of second sensor electrode columns each including a plurality of second sensor electrodes having a length defined by a longitudinal axis and a width extending in a direction across the length; a plurality of lines connected to the first sensor electrode columns and the second sensor electrode columns; and a pad unit including a plurality of pads connected to the lines, wherein at least some of the second sensor electrodes have a width that varies along the longitudinal axis of its respective second electrodes.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A thin film transistor, a thin film transistor array panel including the same, and a method of manufacturing the same are provided, wherein the thin film transistor includes a channel region including an oxide semiconductor, a source region and a drain region connected to the channel region and facing each other at both sides with respect to the channel region, an insulating layer positioned on the channel region, and a gate electrode positioned on the insulating layer, wherein an edge boundary of the gate electrode and an edge boundary of the channel region are substantially aligned.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A thin film transistor, a thin film transistor array panel including the same, and a method of manufacturing the same are provided, wherein the thin film transistor includes a channel region including an oxide semiconductor, a source region and a drain region connected to the channel region and facing each other at both sides with respect to the channel region, an insulating layer positioned on the channel region, and a gate electrode positioned on the insulating layer, wherein an edge boundary of the gate electrode and an edge boundary of the channel region are substantially aligned.
Abstract:
A display device includes: a plurality of first electrode patterns; a plurality of second electrode patterns; a plurality of first touch signal lines; and a plurality of second touch signal lines. The plurality of first electrode patterns respectively include a plurality of first electrode cells physically separated from each other and arranged in a first direction. The plurality of second electrode patterns include a plurality of second electrode cells physically separated from each other and arranged in a second direction crossing the first direction. The plurality of first touch signal lines are connected to the first electrode cells. The plurality of second touch signal lines are connected to the second electrode cells. The first and second electrode patterns and the first and second touch signal lines are all positioned at the same layer on a substrate. The first touch signal lines are independently connected to each first electrode cell.