Abstract:
A method and apparatus for calculating a torque of a walking assistance device, the method including receiving a measured joint angle, obtaining a gait parameter with respect to a transition among a predetermined number of gait states based on the joint angle, obtaining a gait cycle based on the joint angle, and obtaining an output torque based on the gait cycle and the gait parameter, is provided.
Abstract:
A walking assistance method may include: detecting a landing time of a foot of a user; and/or initiating gait assistance based on a first joint location of a first leg of the user sensed at the landing time and a second joint location of the user sensed after the landing time. A walking assistance apparatus may include: a driver configured to perform gait assistance of a user; and/or a controller configured to control the driver to initiate the gait assistance based on a first joint location of a first leg of the user sensed at a landing time of a foot of the user and a second joint location sensed after the landing time.
Abstract:
A method and apparatus for recognizing a motion of a user are provided. The apparatus may map each of right leg angle information and left leg angle information to context information by comparing each of the right leg angle information and left leg angle information to a comparison value and/or preset threshold, may generate a motion event corresponding to the context information based on a criterion, and may recognize the motion of the user based on the motion event and a previous motion of the user.
Abstract:
An apparatus and method for recognizing a gait motion by detecting a landing point in time of a foot of a user based on sensed acceleration information, inferring a gait motion based on right and left hip joint angle information of the user sensed at the detected landing point in time of the foot of the user, and detecting a landing leg between both legs of the user based on the inferred gait motion may be provided.
Abstract:
A method, performed by a wearable device, of outputting a torque includes obtaining a first angle of a first joint of a first leg of a user and a second angle of a second joint of a second leg of the user, calculating a first adjustment angle, based on an offset angle set for the first angle and the first joint, determining a first state factor associated with the first angle and the second angle, based on the first adjustment angle and the second angle, determining a first value of a parameter for adjusting at least one of a magnitude, a direction, and timing of a torque to be output, determining a first torque value, based on the first state factor and the first value of the parameter, and controlling a motor driver of the wearable device to output the first torque value.
Abstract:
A method of measuring muscular fitness of a user using a wearable device includes determining a target resistance profile for a target movement to be performed by the user wearing the wearable device to measure muscular fitness, controlling a motor driver circuit of the wearable device based on the target resistance profile to control a resistance force to be provided to the user, measuring state information of an actual movement performed by the user under the resistance force, and measuring the muscular fitness of the user based on the state information.
Abstract:
A method and apparatus for controlling a walking assistance apparatus are provided. The apparatus may include a detector configured to detect a first step of a user, based on measured right and left hip joint angle information, a reconstructor unit configured to reconstruct knee joint information matched to the right and left hip joint angle information based on knee joint trajectory information in response to the user's steps, and a torque generator configured to generate a first torque applied to a first leg corresponding to the first step. The torque generator may generate the first torque, based on a second torque applied to a second leg that is opposite to the first leg and that corresponds to a second step preceding the first step.
Abstract:
A method and apparatus for recognizing a motion of a user are provided. The apparatus may map each of right leg angle information and left leg angle information to context information by comparing each of the right leg angle information and left leg angle information to a comparison value and/or preset threshold, may generate a motion event corresponding to the context information based on a criterion, and may recognize the motion of the user based on the motion event and a previous motion of the user.
Abstract:
A method and apparatus for helping a user walk may verify whether the user is in a standing state and calculate a torque that controls balance of the user, and an assistance force for controlling balance may be provided for the user based on the torque generated by an actuator.
Abstract:
A method may include: calculating a first assistance torque to be provided to a user wearing a walking assistance apparatus; measuring a degree of twisting of a portion of the apparatus; calculating a second assistance torque transferred to the user based on the degree of twisting; and/or calculating a third assistance torque based on the first and second assistance torques, the third assistance torque corresponding to correction of the twisting. An assistance torque calculation apparatus may include: a bend sensor configured to measure a degree of twisting of a portion of a walking assistance apparatus; and/or a processor configured to calculate a first assistance torque to be provided to a user wearing the walking assistance apparatus, configured to calculate a second assistance torque transferred to the user based on the degree of twisting, and/or configured to calculate a third assistance torque based on the first and second assistance torques.