Abstract:
A display device includes a supporting substrate including a polymeric material, base substrate disposed on an upper surface of the supporting substrate, a pixel array disposed in a display area of the base substrate, a transfer wiring disposed in a bending area of the base substrate and electrically connected to the pixel array, and an organic filling portion disposed under the transfer wiring in the bending area. The base substrate includes an organic film including a polymeric material, and an inorganic barrier film overlapping the organic film and extending outwardly from an edge of the organic film. The organic filling portion contacts the organic film of the base substrate.
Abstract:
A display panel includes: an active area and a peripheral area adjacent to the active area, wherein the active area includes a display area including a plurality of emitting pixels and a non-display area including a plurality of non-emitting pixels, an emitting pixel of the plurality of emitting pixels includes a light-emitting element, and a non-emitting pixel of the non-emitting pixels does not include any light-emitting element or includes a pseudo-light-emitting element that is not capable of emitting light.
Abstract:
An organic light-emitting diode (OLED) display having thin film transistors (TFTs) is disclosed. In one aspect, TFTs of the OLED display include a substrate and a first semiconductor layer formed over the substrate and including first channel, source, and drain regions and a lightly doped region between the first channel region and the first source and drain regions. The OLED display also includes a second semiconductor layer formed over the substrate and including second channel, source, and drain regions. The OLED display further includes first and second gate electrodes formed over the first semiconductor layer and a third gate electrode formed over the second semiconductor layer. The width of the second gate electrode is less than that of the first gate electrode and the lightly doped region overlaps a portion of the first gate electrode and does not overlap the second gate electrode.
Abstract:
An organic light-emitting diode display is disclosed. In one aspect, a semiconductor layer is on a substrate, and the semiconductor layer is non-linear. A gate metal line is on the semiconductor layer, and an insulating layer covering the semiconductor layer and the gate metal line and having a plurality of contact holes connected to the semiconductor layer. A data metal line is on the insulating layer and electrically connected to the semiconductor layer via a selected one of the contact holes. An OLED is electrically connected to the gate metal line and the data metal line, and the semiconductor layer includes a narrow semiconductor layer having a first width and an expansion semiconductor layer formed adjacent to the selected contact hole and having a second width greater than the first width.
Abstract:
Disclosed herein is an organic light emitting diode display, including a substrate, a first thin film transistor including a first active pattern on the substrate and a first gate electrode on the first active pattern, a data wire on the first gate electrode, a first interlayer insulating layer between the first gate electrode and the data wire, a second interlayer insulating layer positioned the first interlayer insulating layer and the data wire, and an organic light emitting diode positioned on the data wire and connected to the first active pattern.
Abstract:
A display device includes a substrate, a switching transistor and a driving transistor positioned on the substrate, a first electrode connected to the driving transistor, a second electrode positioned on the first electrode, and a pixel definition layer positioned between the first electrode and the second electrode, where the pixel definition layer includes a first portion, and a second portion having a thickness less than that of the first portion, where a pixel opening defined in the pixel definition layer is enclosed by the first portion, and the second portion overlaps the first electrode and the second electrode.
Abstract:
Disclosed herein is an organic light emitting diode display, including: a first thin film transistor including a first active pattern positioned on the substrate and a first gate electrode positioned on the first active pattern; a third thin film transistor including a third active pattern connected to the other end of the first active pattern and a third gate electrode positioned on the third active pattern; and a gate bridge directly connecting between the third active pattern and the first gate electrode and positioned between the substrate and the third active pattern.
Abstract:
An organic light-emitting diode (OLED) display having thin film transistors (TFTs) is disclosed. In one aspect, TFTs of the OLED display include a substrate and a first semiconductor layer formed over the substrate and including first channel, source, and drain regions and a lightly doped region between the first channel region and the first source and drain regions. The OLED display also includes a second semiconductor layer formed over the substrate and including second channel, source, and drain regions. The OLED display further includes first and second gate electrodes formed over the first semiconductor layer and a third gate electrode formed over the second semiconductor layer. The width of the second gate electrode is less than that of the first gate electrode and the lightly doped region overlaps a portion of the first gate electrode and does not overlap the second gate electrode.
Abstract:
A liquid crystal display includes: a substrate; a gate line and a data line disposed on the substrate; a semiconductor layer disposed on the substrate; first and second field generating electrodes disposed on the substrate; and a first protecting layer formed from the same layer as the first field generating electrode and covering at least a portion of the data line.
Abstract:
The present disclosure relates to a light emitting display device that includes a transparent display area including a light transmission area and a normal display area, wherein the transparent display area includes: an anode including an opening; a first light blocking part filling the opening; and a second light blocking part positioned along an exterior side of the anode. A height of a highest part of the first light blocking part is different than a height of a highest part of the second light blocking part.