Abstract:
A method of improving optical characteristics of an optical window operating in a flow of fluid and having first and second panes of optically transmissive material—each having an edge adjacent to, parallel with, and at least partially coextensive with each other—is described herein. The method includes inserting a thermally conductive blade between two adjacent edges of the first and second panes of optically transmissive material; and lifting an adverse flow stagnation zone forward of the optical window by protruding the thermally conductive blade into the flow of fluid from an outer surface of the panes of the optical window.
Abstract:
A method of improving optical characteristics of an optical window operating in a flow of fluid and having first and second panes of optically transmissive material—each having an edge adjacent to, parallel with, and at least partially coextensive with each other—is described herein. The method includes inserting a thermally conductive blade between two adjacent edges of the first and second panes of optically transmissive material; and lifting an adverse flow stagnation zone forward of the optical window by protruding the thermally conductive blade into the flow of fluid from an outer surface of the panes of the optical window.
Abstract:
A compliant mount or mechanism structure includes a titanium-zirconium-niobium alloy including titanium, about 13.5 to about 14.5 wt. % zirconium, and about 18 to about 19 weight % (wt. %) niobium. The titanium-zirconium-niobium alloy has a congruent melting temperature of about 1750 to about 1800° C.
Abstract:
An apparatus includes a PWG having a core region and a cladding layer. The amplifier is configured to receive pump light. The core region is configured to amplify an input beam using energy from the pump light to generate an amplified output beam. The apparatus also includes a cooling fluid configured to cool the core region. The cooling fluid has a lower refractive index than the core region and the cladding layer in order to support guiding of the input beam and pump light within the amplifier. The amplifier also includes first and second endcaps attached to opposite faces of the core region and cladding layer. The core region, cladding layer, and endcaps collectively form a monolithic fused structure. Each endcap has a major outer surface that is larger in area than a combined area of the faces of the core region and cladding layer to which the endcap is attached.
Abstract:
A method includes obtaining a substrate having at least one exposed metal surface. The method also includes electro-depositing metal onto the at least one exposed metal surface of the substrate and around at least a portion of an optical fiber to secure the optical fiber to the substrate. The substrate and the electro-deposited metal are configured to remove heat from the optical fiber. The method could further include electro-depositing metal around a sacrificial material and removing the sacrificial material to form at least one cooling channel through the electro-deposited metal. The optical fiber could include a polymer coating, where a portion of the polymer coating is removed at an end of the optical fiber. The substrate and the electro-deposited metal could be faceted at an input of the optical fiber and at an output of the optical fiber. The optical fiber could have a coiled arrangement on the substrate.
Abstract:
An optical device may include a sacrificial limiter filter including at least one layer of graphene disposed on a substrate. The at least one layer of graphene may be configured to absorb and scatter at least a portion of electromagnetic radiation incident on the at least one layer of graphene.
Abstract:
An optical device may include a sacrificial limiter filter including at least one layer of graphene disposed on a substrate. The at least one layer of graphene may be configured to absorb and scatter at least a portion of electromagnetic radiation incident on the at least one layer of graphene.
Abstract:
A method for preparing a surface of a YAG crystal for thermal bonding includes performing an ion implantation process to introduce nitrogen into a surface layer of the YAG crystal to replace depleted oxygen therein, to change surface energy of the surface layer of the YAG crystal and to provide desired bonding characteristics for the surface layer; and joining the ion implanted surface layer with a thermal management device configured to dissipate heat from the YAG crystal. Also, a micro-chip device having a YAG crystal whose surface is prepared with the above disclosed method is provided and a device for forming a metallization pattern on a surface of the YAG crystal is provided.