Abstract:
Embodiments include systems and methods for managing tune-way in a multi-subscription communication device. A processor of a multi-subscription communication device may determine a first signal strength of a first cell signal and a second signal strength of a second cell signal. The processor may perform a tune-away procedure to a weaker of the first cell signal and the second cell signal. Embodiments may include determining signal strengths of each component carrier of the first cell signal and the second cell signal.
Abstract:
Various embodiments implemented on a mobile communication device provide methods for skipping power measurements of frequency bands included in a list of frequency bands received from a first subscription's network to conserve power and to increase the likelihood of avoiding a coexistence event between a first subscription and a second subscription. Specifically, a processor of the mobile communication device may order the list of frequency bands such that non-interfering frequency bands are ordered before interfering frequency bands. The processor may then take power measurements of frequency bands in the list, in order, until the processor determines that a power measurement has satisfied a minimum power threshold. In response to such a determination, the device processor may report the power measurement that satisfies the minimum power threshold to the first subscription's network and may not take any more power measurements of the remaining frequency bands in the list.
Abstract:
Methods and devices are disclosed for managing multiple-input multiple-output (MIMO) mode on a multi-SIM wireless device. The wireless device may determine whether all of the SIMs are in an active state, and identify each active SIM and each RF resource that is associated with an inactive SIM if less than all of the SIMs are in the active state. The wireless device may determine whether at least one identified active SIM and at least one identified RF resource satisfy MIMO criteria. Upon determining that at least one identified active SIM and at least one identified RF resource satisfy the MIMO criteria, the wireless device may allocate, for use in MIMO operations, the at least one identified RF resource to a protocol stack associated with a selected one of the at least one identified active SIM.
Abstract:
Aspects of the present disclosure relate to a multimode user equipment (UE) that when suffering a power crunch, can intelligently reselect to another RAT to extend the battery life of the UE. The reselected RAT has a lower specified maximum transmit power relative to the currently attached RAT. Therefore, the UE may reduce its battery drain to extend its service time per charge when a call is made utilizing the reselected RAT. The UE intelligently selects the RAT that will likely consume less uplink transmit power to communicate with a base station in order to conserve battery power in a poor coverage area, when the UE is experiencing a power crunch condition.
Abstract:
A method, an apparatus, and a non-transitory computer readable medium for receiving data and one or more redundant equivalent versions of the data from a remote user equipment (UE), buffering the data and the one or more redundant equivalent versions of the data, transmitting the data to a base station, receiving at least one negative acknowledgement, relating to the data, from the base station indicating an unsuccessful reception of the data; and transmitting, in response to receiving the at least one negative acknowledgement, at least one of the one or more redundant equivalent versions of the data to the base station.
Abstract:
Methods, systems, and devices for wireless communication are described. One technique includes identifying, by a user equipment (UE), a periodic time window for the UE to access a network, and transmitting an indication of the periodic time window to the network in a random access channel transmission. The technique also describes receiving, from the network based at least in part on the periodic time window, an indication of uplink resources allocated to the UE during the identified periodic time window. Another technique includes receiving, from a UE in a random access channel transmission, an indication of a periodic time window for the UE to access the network. The technique also includes determining, based at least in part on the periodic time window, uplink resources for the UE to access the network during instances of the identified periodic time window and transmit an indication of the uplink resources.
Abstract:
Methods, devices, and systems of various embodiments are disclosed for managing a vehicle charging station having a docking terminal. In various embodiments, a priority of a first autonomous vehicle and a second autonomous vehicle may be determined for using the docking terminal when a docking request is received from the second autonomous vehicle while the first autonomous vehicle occupies the docking terminal. In some embodiments, the priorities of the first and second autonomous vehicles may be based on an available power level of each of the first and second autonomous vehicles. The first autonomous vehicle may be instructed to undock from the docking terminal in response to determining that the second autonomous vehicle has a higher priority.
Abstract:
One aspect of the present application provides a Category M apparatus that communicates over a communication network. The apparatus comprises a processor and an interface. The processor is configured to generate a message requesting registration of the apparatus with a core network, the message generated to include at least one header indicating a power saving mode capability of the apparatus. The processor is further configured to schedule sleep periods and wakeup times for the apparatus. The interface is configured to transmit the message to the core network. The interface is further configured to receive a response, from the core network, including one or more parameters and one or more timers established by the core network based at least in part on the power saving mode capability of the apparatus.
Abstract:
Methods, systems, and devices for wireless communication are described. One technique includes identifying, by a user equipment (UE), a periodic time window for the UE to access a network, and transmitting an indication of the periodic time window to the network in a random access channel transmission. The technique also describes receiving, from the network based at least in part on the periodic time window, an indication of uplink resources allocated to the UE during the identified periodic time window. Another technique includes receiving, from a UE in a random access channel transmission, an indication of a periodic time window for the UE to access the network. The technique also includes determining, based at least in part on the periodic time window, uplink resources for the UE to access the network during instances of the identified periodic time window and transmit an indication of the uplink resources.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive sensor information from a sensor associated with the user equipment, wherein the user equipment is in a deep sleep mode when the sensor information is received. The user equipment may deactivate the deep sleep mode, based at least in part on receiving the sensor information, to permit the user equipment to transmit or decode a network communication.