Abstract:
The subject matter disclosed herein relates to determining whether a reported position of a wireless transmitter is sufficiently accurate in accordance with an accuracy metric based at least in part on a calculated range between an estimated position of a mobile station and the reported position and also based at least in part on one or more measurements taken from one or more signals transmitted by the wireless transmitter.
Abstract:
The subject matter disclosed herein relates to determining whether a reported position of a wireless transmitter is sufficiently accurate in accordance with an accuracy metric based at least in part on a calculated range between an estimated position of a mobile station and the reported position and also based at least in part on one or more measurements taken from one or more signals transmitted by the wireless transmitter.
Abstract:
Systems, apparatus, and methods according to one or more embodiments are provided for encoding assistance data in locations technologies. In an embodiment, a method includes reading, by a processor, tile data of a database in a specific order, wherein the tile data comprises one or more reference data points and/or one or more empty spaces. The method also includes compressing, by the processor, the tile data based on the specific order using encoding. And the method further includes generating relative positions for each individual reference data point with respect to each other in the compressed tile data without specific location identification information for each reference data point.
Abstract:
A distributed architecture provides the location of wireless transmitters to mobile devices for positioning, the location determined from at least one of crowdsourcing and wardriving. A server receives location data for wireless transmitters, such as an access point, a femtocell, Bluetooth Transmitter, radio-frequency identification (RFID) and near-field communication (NFC) station etc., from mobile devices. The server determines the locations of the wireless transmitters using the location data and provides the locations to the respective wireless transmitters. The wireless transmitters broadcast their identities and locations. Thus, a mobile device may receive the location directly from the wireless transmitter, eliminating the requirement of contacting a central server and downloading a regional almanac for positioning. This eliminates in a large number of scenarios the need to have data connectivity at the time of position calculation. Additionally, the wireless transmitters may transmit validation data to the server to validate or invalidate the determined location.
Abstract:
Techniques are provided for utilizing wireless devices for contact tracing, and more specifically for detecting a barrier between devices to enhance contact tracing applications. An example method for detecting a barrier between a first device and a second device includes determining, by the first device, a first range measurement with respect to the second device using a first positioning technique determining, by the first device, a second range measurement with respect to the second device using a second positioning technique that is different from the first positioning technique, and detecting the barrier between the first device and the second device based on the first range measurement and the second range measurement.
Abstract:
Disclosed are methods, systems, devices, servers, apparatus, computer-/processor-readable media, and other implementations, including a method that includes: establishing an emergency call session between a wireless device and a public safety answering point (PSAP) server, via a first communication link, in response to an emergency indication provided by the wireless device; and sending location information indicating a location of the wireless device to the PSAP server via a second communication link, the location information indicating the location of the wireless device and being associated with the emergency call session; where the first communication link is different from the second communication link.
Abstract:
Disclosed are methods, systems, devices, servers, apparatus, computer-/processor-readable media, and other implementations, including a method that includes receiving by an emergency call server an indication of an emergency condition at a device, determining whether the device is to be tracked based, at least in part, on the indication of the emergency condition, and transmitting a triggering message from the emergency call server, in response to a determination that the device is to be tracked, to trigger at the device a tracking session to cause the device to periodically collect and send tracking session data to one or more servers. The tracking session, established between the device and the one or more servers, is separate from an emergency call session established between the device and the emergency call server.
Abstract:
Disclosed are methods, systems and devices for addressing effects of transmission by a transmitter in an assigned uplink communication channel on a signal received at a receiver co-located with the transmitter. In a particular embodiment, communication in an alternative communication channel may be initiated in response to a determination that uplink transmission in the assigned communication channel likely interferes with at least one radio frequency receiving function.
Abstract:
Method and apparatus for processing access point (AP) crowdsourcing data are disclosed. In one embodiment, the method comprises receiving WiFi scan lists and their corresponding location descriptions, where the WiFi scan lists and their corresponding location descriptions include information observed about at least one access point device, consolidating the WiFi scan lists and their corresponding location descriptions based at least in part on a set of selection criteria to generate a WiFi AP record, where the set of selection criteria comprises a maximum number of scan lists to be uploaded in a predetermined period of time and the maximum number of scan lists to be uploaded in a single upload, and uploading the WiFi AP record to a crowdsourcing server.
Abstract:
Techniques are disclosed for ranking wireless access points using crowdsourced information, and using these rankings to determine a priority of tiles to download to a mobile device. The number of tiles that may be downloaded by a mobile device and/or the number of wireless access points in each tile may be optimized, based on wireless access point rankings and tile priority.