Abstract:
Methods, systems, and devices for wireless communications are described. The method includes receiving control signaling that configures the UE with a retransmission request time duration for requesting packet retransmission relative to when a packet in a sequence of packets is determined to be unsuccessfully received, monitoring for one or more transmissions including at least a subset of packets in the sequence of packets, and transmitting, prior to expiration of the retransmission request time duration, a first retransmission request to request retransmission of at least one packet in the sequence of packets based on a first retransmission trigger being satisfied.
Abstract:
Methods, systems, and devices are described for wireless communication. A user equipment (UE), for example, may determine a content size of an uncompressed buffer and a content size of a compressed buffer. The UE may then generate a buffer status report (BSR) based on the content sizes of the uncompressed buffer and the compressed buffer. Alternatively, a base station may receive a BSR based on a size of an uncompressed buffer of the UE. The base station may then receive a compressed packet from the UE and may determine a compression gain based on a size of the compressed packet and a size of a corresponding uncompressed packet. The base station may then adjust the received BSR based on the compression gain.
Abstract:
Aspects of the present disclosure provide methods and apparatuses that use various connection reconfiguration signaling schemes to enable fast user equipment reconfiguration in wireless networks. A network can reduce reconfiguration signaling traffic or overhead by reducing the amount of configuration data sent to each user equipment (UE) in a reconfiguration message. In some examples, when a UE first enters a network area, the network may provide the UE with a list of commonly used baseline configurations. Each baseline configuration may be identified by an index and a value tag. Subsequently, the network may transmit a reconfiguration message including, for example, only the index and value tag to indicate the desired configuration.
Abstract:
Methods, systems, and devices for wireless communications are described. In aspects, a wireless device such as a user equipment (UE) may identify an amount of acknowledgement (ACK) reduction associated with an applications processor. The amount of ACK reduction may be determined based on a communication from the applications processor, or an ACK frequency in a group of packets received from the applications processor. The UE may determine whether to modify an ACK management scheme (e.g., a transmission control protocol (TCP) ACK coalescing scheme) based at least in part on the amount of ACK reduction associated with the applications processor. The UE may modify the ACK management scheme. The UE may transmit ACKs in accordance with the modified ACK management scheme. Numerous other aspects are provided.
Abstract:
Techniques are described for wireless communication. One method includes receiving, at a medium access control (MAC) entity, protocol data units (PDUs) corresponding to one or more Internet protocol (IP) flows, routing the PDUs from the MAC entity to respective radio link control (RLC) entities based on a logical channel prioritization, and forwarding the PDUs from respective RLC entities to one or more packet data convergence protocol (PDCP) entities mapped to each RLC entity. Another method includes receiving, at a protocol layer entity above an RLC layer of a transmitting device, a PDU, labeling the PDU with a unique PDCP instance identifier packet, and passing the PDU to a protocol layer entity below the PDCP layer of the transmitting device.
Abstract:
Aspects described herein relate to wireless communications. Protocol data units (PDUs) can be received at a network layer from one or more transmitting nodes using a link associated with each respective transmitting node. One or more missing PDUs can be detected based, at least in part, on sequence numbers of the received PDUs. A timer can be started based on the detection of the one or more missing PDUs. In response to expiration of the timer, and without receiving the one or more missing PDUs before the expiration of the timer, a lower network layer can be notified that the one or more missing PDUs are received to prevent attempted transmitting/retransmitting or other processing of the one or more missing PDUs.
Abstract:
Aspects of the present disclosure provide various apparatuses and methods for formatting and decoding a protocol data unit (PDU) or data packet such that header size and packet processing time at the transmitter and/or receiver can be reduced. The proposed PDU formats may facilitate more efficient packet processing at a medium access control (MAC) layer, a radio link control (RLC) layer, and/or a packet data convergence protocol (PDCP) layer, and less dependent on the number of service data units (SDUs) included in a PDU.
Abstract:
Link speed control systems for power optimization are disclosed. In one aspect, a communication link adjusts a data transfer speed based on link utilization levels. In a second exemplary aspect, one or more conditions affecting a link speed are weighted and collectively evaluated to determine an efficient or optimal link speed. By adjusting the link speed in this fashion, lower link speeds may be used, and net power savings may be effectuated.
Abstract:
Resource and power savings in internal data transfer in enhanced multimedia broadcast-multicast service (eMBMS) is disclosed herein which may include receiving, by a modem processor of a mobile device, data packets of a data object from a broadcast-multicast service. The modem processor may buffer the received data packets without forwarding the buffered data packets to an application processor associated with the modem processor. The modem processor may also determine an end of a segment of the data object. The segment may indicate a period during which the data object is scheduled to be received by the modem processor. The modem processor may forward, in a single data burst, the buffered data packets to the application processor before the end of the segment
Abstract:
A user equipment (UE) and source base station may use data compression techniques for data packets sent between them. During a handover, the source base station may provide data compression context to a target base station, thus enabling the target base station to continue the data compression following the handover without having to reestablish the data compression context. The source base station may determine data compression capabilities of the UE or the target base station, or both, and may communicate the determined data compression capabilities to the UE or target base station. The source base station may identify at least one gap in a sequence of packets received from the UE, and communicate the existence of the gap to the target base station, which may request retransmission of packets associated with the gap.