Abstract:
Methods and apparatuses for wireless power transfer, and particularly, wireless power transfer to remote systems such as electric vehicles are disclosed. In one aspect, a wireless power transfer device is provided comprising a casing housing at least one component, with a first portion of the casing containing a set first flowable medium, and a second portion of the casing containing a second set flowable medium having a different density to that of the first set flowable medium. The casing can include a locating portion, with the locating portion in contact with a flowable medium set within the casing. In another aspect, a method of manufacturing a wireless power transfer device is provided. During manufacturing, a casing of the device may be loaded to maintain a desired shape while at least one component and a settable flowable medium are introduced into the casing.
Abstract:
Dynamic systems may require a large number of coils (charging pads) which may be installed into the roadway to wirelessly provide power to electric vehicles as they are traveling along the roadway. The current in each of these coils may need to be turned on and off as a vehicle drives over the coils in order to efficiently utilize power and properly convey power to the passing vehicles. The supply network behind these coils may need to be capable of managing the individual coils with minimal infrastructure and cost as well as be capable of distributing the required power from the power grid to these pads efficiently and safely. The supply network may include charging coils, switches, local controllers, and distribution circuitry within a modular element, which may receive power from external sources and may be controlled by a central controller.
Abstract:
Systems, methods, and apparatuses for receiving charging power wirelessly are described herein. One implementation may include an apparatus for receiving charging power wirelessly from a charging transmitter having a transmit coil. The apparatus comprises a receiver communication circuit, coupled to a receive coil and to a load. The receiver communication circuit is configured to receive information associated with at least one characteristic of the charging transmitter. The apparatus further comprises a sensor circuit configured to measure a value of a short circuit current or an open circuit voltage associated with the receive coil. The apparatus further comprises a controller configured to compare the value of the short circuit current or the open circuit voltage to a threshold charging parameter set at a level that provides charging power sufficient to charge the load. The controller may be further configured to initiate receiving the charging power from the charging transmitter when the short circuit current or the open circuit voltage associated with the receive coil is greater than or equal to the threshold charging parameter.
Abstract:
Systems, methods, and apparatus for partial electronics integration in vehicle pads for wireless power transfer applications are provided. In one aspect, an apparatus for wirelessly receiving charging power is provided. The apparatus comprises a first enclosure including at least a receive coupler configured to generate an alternating current under the influence of an alternating magnetic field in a first enclosure. The first enclosure further includes a rectifier circuit configured to modify the alternating current to produce a direct current for output from the first enclosure to a controller circuit in a disparately located second enclosure. The apparatus further comprises at least one direct current inductor configured to receive the direct current from the rectifier circuit. In some implementations, the apparatus further comprises the controller circuit in the second enclosure. The controller circuit is configured to selectively provide the direct current to a battery.
Abstract:
Systems, methods, and apparatus are disclosed for power transfer including a plurality of coil structures located over a ferrite element, the plurality of coil structures configured to generate a high flux region and a low flux region, the low flux region being located between the plurality of coil structures, and a tuning capacitance located directly over the ferrite element in the low flux region.
Abstract:
Systems, methods, and apparatus are disclosed for wirelessly charging an electric vehicle. In one aspect, a method of wirelessly charging an electric vehicle is provided. The method includes, obtaining a request from the electric vehicle for a level of charging power to be delivered from a power transmitter to the electric vehicle via a charging field. The method further includes controlling a current or voltage of the power transmitter based on a power efficiency factor and the requested level of charging power.
Abstract:
An apparatus, a system and a method for wireless power transfer are disclosed. A method of forming a physical core of a wireless power transfer device includes positioning two or more electromagnetically permeable members adjacent to one another and applying longitudinal pressure to an end of the electromagnetically permeable members, the electromagnetically permeable members at least partially encapsulated in retaining compound. A wireless power transfer device includes a casing in which is housed an induction coil, a plurality of electromagnetically permeable members arranged in a line and a retaining compound.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer and particularly wireless power transfer to remote systems such as electric vehicles. In one aspect, a wireless power transfer system includes a transmitter and a receiver. The transmitter includes a first inductive element and a current generator. The current generator supplies a current to the first inductive element to generate an electromagnetic field. The receiver includes a second inductive element, a tuning circuit, and a controller. The second inductive element receives wireless power from the electromagnetic field. The tuning circuit has a reactance and includes a plurality of capacitive elements connected to the second inductive element. The plurality of capacitive elements supply an output current to a load. The controller selectively connects the plurality of capacitive elements in a plurality of configurations. The tuning circuit has substantially the same reactance in each of the plurality of configurations.
Abstract:
Systems, methods and apparatuses for wireless power transfer are disclosed. In one aspect, a wireless power transfer apparatus is provided comprising a casing with at least one projecting member projecting from an inner side of the surface of the casing that is subject to external compression forces. An induction coil and other components such as insulating layers and magnetically permeable members are positioned around at least one of the projecting members and maintained in position by the projecting members. The wireless power transfer apparatus is able to withstand large compressive forces, such as those imparted by heavy vehicles and the like passing over the apparatus when positioned on the ground in a wireless power transfer system.
Abstract:
Systems, methods, and apparatus are disclosed for power transfer including a plurality of coil structures located over a ferrite element, the plurality of coil structures configured to generate a high flux region and a low flux region, the low flux region being located between the plurality of coil structures, and a tuning capacitance located directly over the ferrite element in the low flux region.