Abstract:
In one example, a device includes one or more processors configured to receive a first segment of media data, wherein the media data of the first segment comprises a stream access point, receive a second segment of media data, wherein the media data of the second segment lacks a stream access point at the beginning of the second segment, and decode at least a portion of the media data of the second segment relative to at least a portion of data for the first segment. In this manner, the techniques of this disclosure may be used to achieve a Low Latency Live profile for, e.g., dynamic adaptive streaming over HTTP (DASH).
Abstract:
Systems, methods, and devices of the various embodiments enable evolved Multimedia Broadcast Multicast Service (“eMBMS”) network sharing, content sharing, and roaming. The various embodiments may enable Multimedia Broadcast Multicast Service (“MBMS”) service continuity across different public land mobile networks (“PLMNs”) by associating the same MBMS services providing identical content in different PLMNs with each other. In an embodiment, service discovery may be provisioned to a receiver device when or after the receiver device is attached to a PLMN. In an embodiment, content sharing across different PLMNs may be supported by a user service description indicating the different temporary mobile group identifiers (“TMGIs”) of the same service across different PLMNs. In another embodiment, content sharing across different PLMNs may be supported by a user service description indicating the same TMGI for the same service across different PLMNs. In an embodiment, MBMS keys may be shared across PLMNs.
Abstract:
A method for blackout, retune and roaming enforcement in a cellular network multimedia distribution system. The method includes the steps of receiving a plurality of service regions in the cellular network multimedia distribution system; determining an affiliation of the client with one of the service regions in the plurality of service regions; and, processing a service region specific message based on the affiliation. An apparatus, as well as a computer readable medium having instructions stored thereon, the stored instructions, when executed by a processor, cause the processor to perform the method are also disclosed.
Abstract:
Systems, methods, and devices of the various embodiments enable HTTP redirect messages to indicate content access policy information. In this manner, policy rules may be implemented based on the policy information in the HTTP redirect messages to control network congestion and/or quality of service (“QOS”).
Abstract:
Systems and methods are provided for mitigating interference in a wireless network to facilitate network performance. In an aspect, a method for transmitting wireless data packets is provided. The method includes receiving data packets from a wireless distribution network. The data packets are analyzed to determine if a subset of the data packets are to be suppressed in view of transmitter signal conditions and substituting null packets for the subset of data packets if the subset of data packets are determined to be suppressed.
Abstract:
Systems, methods, and receiver devices enable broadcasters with restricted content license areas (e.g., Designated Market Areas (“DMAs”) to distribute content via Over the Top (“OTT”) IP networks. Embodiments enable client reporting and authentication as well as broadcast content encryption. In an embodiment, information from the client may be reported back to the broadcasters, such as a view history/use report. In an embodiment, hand off between DMAs may be enabled. In an embodiment, local advertisement insertion in network content may be enabled. Embodiments may enable Multicast-Broadcast Single Frequency Network (“MBSFN”) operation across DMA boundaries.
Abstract:
Embodiments enable HTTP servers to pass incomplete and/or corrupted files in response to file requests from clients. In the various embodiments, HTTP servers may be enabled to generate status codes identifying that an incomplete version of a file is being returned in response to a file request. In an embodiment, an HTTP server may be enabled to determine the ability of a client to handle incomplete versions of files.
Abstract:
Various aspects include methods for facilitating digital rights management (DRM) within an electronic device. Various aspect methods may include receiving a first broadcast message, storing a DRM license object extracted from the DRM license-related message, receiving a DRM license request message generated by a content decryption module (CDM) of the electronic device, determining that the DRM license object is associated with the encrypted content received by the electronic device during the broadcast content session based on the identification information included in the DRM license request message received from the CDM of the electronic device, and sending the DRM license object to the CDM of the electronic device. The first broadcast message may be a DRM license-related message generated by a broadcast server. The DRM license request message may include identifier information associated with encrypted content received by the electronic device during a broadcast content session.
Abstract:
Systems, methods, and receiver devices enable broadcasters with restricted content license areas (e.g., Designated Market Areas (“DMAs”) to distribute content via Over the Top (“OTT”) IP networks. Embodiments enable client reporting and authentication as well as broadcast content encryption. In an embodiment, information from the client may be reported back to the broadcasters, such as a view history/use report. In an embodiment, hand off between DMAs may be enabled. In an embodiment, local advertisement insertion in network content may be enabled. Embodiments may enable Multicast-Broadcast Single Frequency Network (“MBSFN”) operation across DMA boundaries.
Abstract:
In a first configuration, a UE receives, from a service provider, a certificate authority list. The certificate authority list is at least one of integrity protected or encrypted based on a credential known by the UE and the service provider and stored on a smartcard in the UE. The UE authenticates a server using the received certificate authority list. In a second configuration, the UE receives a user service discovery/announcement including a reception report configuration and an address of a server. The UE sends a protected reception report to the server based on the reception report configuration. In a third configuration, the UE receives a protected broadcast announcement and communicates based on the broadcast announcement. The broadcast announcement is at least one of integrity protected or encrypted based on a credential known by the UE and stored on a smartcard in the UE.