Abstract:
Methods and apparatuses are provided that include counting devices for broadcast data services. The devices can be counted based on registrations received from the devices. This registration count can additionally or alternatively be used to determine whether further counting is desired. In addition, base stations can transmit counting requests to the devices using a paging message or other message such that idle mode devices can receive the counting requests. The idle mode devices can respond to the requests or send autonomous counting report by switching to an active mode for the purpose of responding or another purpose.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE that receives a multicast/broadcast data transmission via a group bearer. The UE receives a paging message including a type of the group bearer. In addition, the UE determines whether to remain in or change to an RRC idle mode or an RRC connected mode based on the type of the group bearer received in the paging message.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE that performs a PTT/PTX call setup for communication via MBMS. In a first configuration, the UE sets up a unicast bearer with an eNB, and sends group call setup signaling to the eNB while setting up the unicast bearer. In a second configuration, the UE sets up a unicast bearer with an eNB, and receives group call setup signaling from the eNB while setting up the unicast bearer. In a third configuration, the UE receives a group page while in an RRC idle state, and receives group call setup signaling based on information in the group page.
Abstract:
A UE receives a list of neighboring cells of a serving cell serving the UE, and a list of SAIs. The list of neighboring cells may be included in a first system information message and the list of SAIs may be included in a second system information message. The first and second messages may be the same message, e.g., SIB15, or may be different messages SIB4/SIB5 and SIB15. The list of SAI includes those SAI supported by at least one of the serving cell and the neighboring cells. At least one of the SAIs is formatted to include mapping information that maps the SAI to one or more of the neighboring cells included in the list of neighboring cells. The UE processes the at least one SAI to determine the one or more neighboring cells that support the SAI.
Abstract:
Access by a mobile station to a femto access point (FAP) of a wireless communication system is controlled by an enforcement point in response to mobile station authorization data provided from a storage point that is remote from the FAP. The authorization data is provided in response to FAP authentication data. The authentication data may include a FAP identifier and a message authenticator that the FAP generates by hashing shared secret information. The storage point may provide the authorization data in response to determining that the message authenticator is a hash of the shared secret information.
Abstract:
Systems, methods, and devices of the various embodiments enable the use of a broadcast bearer (such as a Multimedia Broadcast Multicast Service (“MBMS”) bearer), unicast bearer, or both a unicast bearer and a broadcast bearer to deliver content to a receiver device. In various embodiments, network policy governing delivery of one or more service or one or more classes of services via a unicast bearer and a broadcast bearer may be provided to one or more devices in the network. In various embodiments, network policy may be applied to the unicast or broadcast delivery selections of a service to control use of a unicast bearer and/or the broadcast bearer to provision the service.
Abstract:
A UE may camp on a femto cell in an idle mode and determine whether the UE has an interest in receiving an MBMS service from an MBMS cell. When the UE has the interest in receiving the MBMS service, the UE adjusts a priority of the MBMS cell on which the MBMS service is provided or a priority of the femto cell such that the priority of the MBMS cell is higher than the priority of the femto cell. Otherwise, the UE refrains from adjusting the priority of the MBMS cell or the priority of the femto cell.
Abstract:
Systems, methods, and receiver devices enable broadcasters with restricted content license areas (e.g., Designated Market Areas (“DMAs”) to distribute content via Over the Top (“OTT”) IP networks. Embodiments enable client reporting and authentication as well as broadcast content encryption. In an embodiment, information from the client may be reported back to the broadcasters, such as a view history/use report. In an embodiment, hand off between DMAs may be enabled. In an embodiment, local advertisement insertion in network content may be enabled. Embodiments may enable Multicast-Broadcast Single Frequency Network (“MBSFN”) operation across DMA boundaries.
Abstract:
Methods and apparatuses are provided that include enhancing decoding of multicast broadcast control communications, which can be of a relatively large size. A configuration message related to a broadcast channel structure can be received in multiple instances and/or segmented data units. A receiver can combine multiple instances and/or accumulate segmented data units to obtain and/or decode a control channel over which the configuration message is communicated. Communicating segmented data units of the configuration message can allow a broadcast station to utilize a lower data rate, more reliable modulation and coding scheme to encode the configuration message.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a first cell receives a configuration identifying a plurality of transmission layers in a multi-layer spatial multiplexing scheme of a Multi-Media Broadcast over a Single Frequency Network (MBSFN). The configuration may identify resource block allocations to transmission layers, seed values for pattern generation, and timing information used to allocate resource blocks to transmission layers. The first cell transmits a first set of resource blocks during a first period of time using a first transmission layer to one or more user equipments (UE) located in the MBSFN. Another cell located in the MBSFN may concurrently transmit a second set of resource blocks to the UE in a second transmission.