Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may monitor one or more first conditions pertaining to non-cellular communications between the UE and a non-cellular network while the UE is operating in a dual networking mode for steering, switching, or splitting traffic (e.g., an access traffic steering, switching, and splitting (ATSSS) mode) between the non-cellular network and a cellular network. The UE may predict an availability status of at least the non-cellular network based on at least one of the one or more first conditions. In some cases, the UE may determine whether to change dual networking modes based on the availability status and may communicate in accordance with the same or a different dual networking mode using at least one of the cellular network, the non-cellular network, or a combination thereof based on the prediction.
Abstract:
A method for wireless communication performed by a user equipment (UE) includes receiving a reference signal (RS) configuration from a first base station. The RS configuration indicates an RS identifier (ID) of an RS associated with a second base station. The method also includes receiving the RS from the second base station based on receiving the RS configuration. The method further includes transmitting, to the first base station, an interference measurement report associated with receiving the RS from the second base station. The interference measurement report indicates the RS ID associated with the RS from the second base station.
Abstract:
Aspects described herein relate to identifying an aggressor node that transmits interfering signals that cause interference to signals received at the node, communicating a configuration for applying a phase shift to the interfering signals for forwarding to the node from a reflecting node with the phase shift applied, and communicating, from the reflecting node, the interfering signals with the phase shift applied to at least partially cancel the interference to the signals received at the node.
Abstract:
A method of MIMO signal transmission on a cable is disclosed. The cable includes at least a first inner conductor, a second inner conductor, and an outer conductive shield. A first data signal is transmitted using the conductive shield and the first inner conductor. A second data signal is transmitted using at least the second inner conductor. The first and second data signals may be transmitted concurrently. For some embodiments, the second data signal may be transmitted using the first and second inner conductors. Thus, the second data signal may be a differential signal. For other embodiments, the first data signal may be transmitted using the conductive shield and the first inner conductor, and the second data signal may be transmitted using the conductive shield and the second inner conductor.
Abstract:
Multiple input multiple output (MIMO) communication systems and methods for chip to chip and intrachip communication are disclosed. In one aspect, MIMO techniques that have been applied to wireless communication systems are applied to interchip and intrachip communication systems. In particular, a transfer function is applied at the transmitter, and a reverse transfer function is applied at the receiver. The transfer function dynamically changes based on channel conditions to cancel or otherwise mitigate electromagnetic interference (EMI) and crosstalk conditions. In an exemplary aspect, a sum of power levels across the channels may have a maximum. To abide by such power level constraint, the transfer function may be optimized to reduce interference while remaining within the power level constraint.
Abstract:
A method of MIMO signal transmission on a cable is disclosed. The cable includes at least a first inner conductor, a second inner conductor, and an outer conductive shield. A first data signal is transmitted using the conductive shield and the first inner conductor. A second data signal is transmitted using at least the second inner conductor. The first and second data signals may be transmitted concurrently. For some embodiments, the second data signal may be transmitted using the first and second inner conductors. Thus, the second data signal may be a differential signal. For other embodiments, the first data signal may be transmitted using the conductive shield and the first inner conductor, and the second data signal may be transmitted using the conductive shield and the second inner conductor.
Abstract:
A method, an apparatus, and a computer program product are provided. The apparatus may be configured to link user equipment contexts associated with same physical device. A network entity may determine a link between a first context and a second context of a user equipment, and may combine procedures related to the first and the second contexts when the first context and the second context are linked. The first context and the second context may be associated with a common international mobile equipment identity of the UE and different international mobile subscriber identities. A wireless device may maintain a first wireless communications link corresponding to a first subscription and a second wireless communications link corresponding to a second subscription. The wireless device may refrain from performing a first radio resource procedure in relation to the first subscription after performing a similar radio resource procedure in relation to the second subscription.
Abstract:
Aspects of the disclosure relate to a controllable reflective surface (e.g., reconfigurable intelligent surfaces (RIS)) that reflects in multiple directions simultaneously. The controllable reflective surface may include an array of reflecting elements, each reflecting element comprising a radiating component and a phase-shifting component. The array of reflecting elements may be configured to receive control signal sets, where each control signal set configures the array of reflecting elements into a reflecting configuration having a plurality of subsets of the reflecting elements. Here, each subset of the plurality of subsets is configured to reflect radio frequency (RF) signals in a respective direction different from other ones of the first plurality of subsets. The reflecting configuration may define, for example, a block-wise configuration, and interlaced configuration, or a hybrid configuration of the plurality of subsets. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods, systems, and devices for wireless communications are described. In a wireless communications system. a user equipment (UE) may receive. from a base station, control signaling indicating a quasi co-location (QCL) configuration associated with multiple-input multiple output (MIMO) communications within a distance threshold from the base station. In some cases, the UE may receive. from the base station, an indication of a downlink transmission associated with the QCL configuration within the distance threshold. The UE may select a beam to receive the downlink transmission within the distance threshold based on the QCL configuration. In some cases. the UE may receive multiple repetitions of the downlink transmission using corresponding antenna combining weight configurations, and the UE may determine a beam weight configuration for the beam to receive the downlink transmission based on receiving the multiple repetitions of the downlink transmission.
Abstract:
Methods, systems, and devices for wireless communications are described. A first wireless device may be configured to transmit, to a second wireless device, one or more orbital angular momentum (OAM) signals in accordance with a set of radial codeword sequences associated with a polynomial radial codeword configuration, where the one or more OAM signals are transmitted based on a first value of a polynomial term for the polynomial radial codeword configuration. The first wireless device may receive, from the second wireless device on the one or more OAM signals, a feedback message indicating a second value of the polynomial term. The first wireless device may then transmit, to the second wireless device, one or more additional OAM signals in accordance with the set of radial codeword sequences and based on the second value for the polynomial term.