Abstract:
In order to enable a UE receiving a narrowband signal transmitted using in-band resources to use the LTE reference signals to assist the UE in receiving the narrowband signal using an in-band deployment, a phase rotation employed by the base station may be fixed relative to a known reference position in time. An apparatus for wireless communication at a base station may determine a phase offset for a narrowband signal for transmission using wideband resources, the phase offset having a relationship to a reference point in time and transmit the narrowband signal using the determined phase offset. An apparatus for wireless communication at a UE may receive a narrowband signal having a frequency location within a wideband signal and rotate a symbol of the wideband signal by a per symbol phase offset having a relationship of the phase offset to a reference point in time.
Abstract:
Techniques for efficient and accurate frequency scans in Narrow Band-Internet of Things (NB-IoT) systems are provided. In an example, a user equipment (UE) searches for a cell on at least one of a plurality of frequency rasters based on a multi-stage search technique, wherein each stage of the multi-stage search searches the at least one frequency raster based on a different set of search parameters. The UE detects a cell on at least one of the frequency rasters based on the searching.
Abstract:
Aspects of the present disclosure provide techniques that may be utilized by a UE for performing neighbor cell measurement and reselection in narrowband deployment scenarios, such as NB-IoT deployment scenarios. For example, a method for wireless communications by a user equipment (UE), can include determining, while communicating in a serving cell, information regarding one or more transmission deployment mode parameters of at least one neighbor cell, and performing a neighbor cell search with measurement of narrowband reference signals (NRS) based on the one or more transmission deployment mode parameters.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for receive chain selection at a user equipment (UE) with efficient switching between a reduced number of receive chains and an increased number of receive chains for downlink communications based on conditions at the UE. A UE may adaptively adjust the number of active receive chains based on downlink grant activity, channel conditions, network parameters, or any combinations thereof. An estimator block at the UE may determine to adjust the number of receive chains based on a number of downlink grants within one or more time periods. In some cases, grants for an amount of data that exceeds a threshold may be qualified in order to be counted at the estimation block. Further, a transient state may be provided where the UE may maintain a higher number of active receive chains until UE feedback is provided.
Abstract:
Methods, systems, and devices for wireless communications are described. In some examples, a user equipment (UE) may communicate with a base station using multiple receivers and receive an indication from the base station to activate a second bandwidth part of a set of bandwidth parts configured for the UE. In response to the indication, the UE may switch from operating in a first bandwidth part to operating in the second bandwidth part and adjust a quantity of active receivers at the UE based on switching from operating in the first bandwidth part to operating in the second bandwidth part. Additionally or alternatively, the UE may adjust the quantity of active receivers at the UE based on monitoring for downlink grants from the base station.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may be configured to receive a first configuration indicating for the UE to communicate with the base station using a set of receive ports. The UE may transmit, according to the first configuration in a first time interval associated with a first power state of the UE, sounding reference signals (SRSs) on a set of transmit ports corresponding to the set of receive ports. The UE may then communicate using less than all of the set of transmit ports for the SRSs based on determining to operate in a reduced power state. The UE may then receive, based on communicating using less than all of the set of transmit ports for the SRSs, a second configuration indicating for the UE to communicate with the base station using a first subset of receive ports.
Abstract:
Aspects of the present disclosure provide techniques to enable enhanced machine type communication (s) (eMTC) and/or narrowband Internet-of-Things (NB-IoT) devices to transition to idle mode after releasing a connection, such as a radio resource control (RRC) connection, more quickly than with previously known techniques. An example method includes determining, based on an indication received in a narrowband signal on a narrowband region of a bandwidth comprising a plurality of narrowband regions, whether to wait for a delay period, determined based on a configuration received from a network entity, before releasing a radio resource control (RRC) connection and releasing the RRC connection at a time in accordance with the determination.
Abstract:
Dynamic User Equipment (UE) beam switching for millimeter wave (mmWave) measurements in asynchronous networks is discussed in which a UE configured with a plurality of UE beams receives timing information of detected cells in an asynchronous network, and calculates, based on the timing information, a maximum offset for the detected cells indicating a timing difference between a pair of cells of the detected cells that is larger than a timing difference between any other pair of the detected cells. A UE beam switch from a UE beam to another UE beam of the plurality of beams is scheduled based on the maximum offset, which includes using the maximum offset to determine how often the UE beam switch can be performed. Other aspects and features are also claimed and described.
Abstract:
In order to enable a UE receiving a narrowband signal transmitted using in-band resources to use the LTE reference signals to assist the UE in receiving the narrowband signal using an in-band deployment, a phase rotation employed by the base station may be fixed relative to a known reference position in time. An apparatus for wireless communication at a base station may determine a phase offset for a narrowband signal for transmission using wideband resources, the phase offset having a relationship to a reference point in time and transmit the narrowband signal using the determined phase offset. An apparatus for wireless communication at a UE may receive a narrowband signal having a frequency location within a wideband signal and rotate a symbol of the wideband signal by a per symbol phase offset having a relationship of the phase offset to a reference point in time.
Abstract:
One or more aspects of the disclosure provide an efficient equalization scheme capable of mitigating multi-path interference on channels with large delay spread using short-length equalizers. That is, by dividing stored samples of a signal received on the multi-path channel by time into a plurality of clusters, a short-length equalizer can be utilized in an iterative fashion on each of the clusters, thus eliminating the need for a large length equalizer while still providing improved performance over that of a Rake receiver at large delay spreads. Other aspects, embodiments, and features are also claimed and described.