Abstract:
Device-to-device operations are scheduled based on receive and transmit pools that may have a conflict in time domain. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for resolving time domain conflict in device-to-device communication are provided. The apparatus may compute a first block rate metric for a first device-to-device communication on a first frequency and a second block rate metric for a second device-to-device communication on a second frequency. The apparatus may detect a time-domain conflict between the first device-to-device communication on the first frequency and the second device-to-device communication on the second frequency. The apparatus may prioritize the first device-to-device communication on the first frequency and the second device-to-device communication on the second frequency based on the first block rate metric and the second block rate metric.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus selects a serving cell for connection to a network. The apparatus performs a search for a frequency band on a neighbor cell for use in device-to-device communications. The apparatus performs the device-to-device communications using pre-configured resources associated with the frequency band when the search for the frequency band on the neighbor cell fails. The apparatus performs the device-to-device communications using resources associated with the frequency band of the neighbor cell when the search for the frequency band on the neighbor cell is successful.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a first UE. The UE receives an IP packet including header information and data for a MBMS session. The first UE establishes a WWAN communication link with a base station through a WWAN RAT. The first UE provides an access point accessing the WWAN communication link to at least one second UE through a WLAN RAT. The first UE determines a channel condition of the WWAN communication link. The first UE manages at least one multimedia service between the base station and the at least one second UE based on the channel condition.
Abstract:
In an embodiment, a UE performs an IRAT handoff from a source network with a first RAT to a target network with a second RAT, and obtains a channel from the target network. The UE reports a level of QoS on the channel to a server via the target network. The server issues instructions to the UE and/or the target network for modifying the level of QoS in response to the report based on if the level of QoS is insufficient to support a particular type of communication session. In another embodiment, in conjunction with an IRAT handoff, the source network sends a handoff preparation message to the target network to facilitate the target network to initiate setup of a set of channels with a non-IMS application-specific QoS configuration for the UE on the target network in conjunction with the handoff.
Abstract:
In wireless communication, uplink communication by a wireless communication system user equipment may include providing data packets by a data source in the user equipment, detecting a pattern relating to uplink transmission of the plurality of data packets, and scheduling transmission of the plurality of data packets by the user equipment. One or more aspects of scheduling transmission of the plurality of data packets may be based on the detected pattern.
Abstract:
Various aspects of the disclosure relate to techniques for handling out-of-order grants. For example, upon detection of an out-of-order grant, the best scheduling policy for handing the out-of-order grants may be selected based on at least one traffic condition. In some aspects, a scheduling policy may involve canceling and regenerating out-of-order grants. In some aspects, a scheduling policy may involve reordering data units. In some aspects, a scheduling policy may involve designating a reorder time window.
Abstract:
The present aspects relate to out-of-service searches in a wireless communication system. Specifically, the present aspects provide that while in an out-of-service state corresponding to a radio resource disconnection, a user equipment (UE) may determine that a first time duration following entry into the out-of-service state has elapsed. The UE may further obtain a geofence identifier representing a shape forming a geographic region including one or more boundaries based on determining that the first time duration has elapsed. The UE may further identify at least one location identifier based at least on the geofence identifier and determine at least one radio access technology (RAT) and one or more associated frequency bands based on the at least one location identifier. The UE may further search on the at least one RAT and one or more associated frequency bands for at least one network entity within the geographic region.
Abstract:
The present methods and apparatuses may select to a cell associated with a radio access technology (RAT) in response to performing a first procedure, the first procedure including at least one of a cell selection procedure, a cell reselection procedure, or a handover procedure. The present methods and apparatuses may further acquire one or more parameters associated with the selected cell identified by a cell global identity (CGI). The present methods and apparatuses may further determine that the CGI of the cell corresponds to a stored CGI of a previous cell. Moreover, the present methods and apparatuses may perform at least one second procedure based on determining that the CGI of the cell corresponds to the stored CGI of the previous cell, the second procedure including a communication configuration procedure based at least on the one or more parameters.
Abstract:
The present disclosure enables an eNB to identify and/or profile stationary verses mobile UEs located within its cell. In addition, the eNB may tailor a discovery filter that includes all of the PACs (e.g., advertisements) being transmitted by stationary UEs within a vicinity of the cell. The discovery filter may be shared with a network server such that a mobile UE that requests information associated with a particular PAC will receive a list of all PACs within the vicinity of the mobile UE. The apparatus monitors transmissions from a plurality of UEs over a period of time. The apparatus determines at least one stationary UE in the plurality of UEs based on one or more features associated with the transmissions.
Abstract:
Certain aspects relate to controlling a transmit power of a user equipment (UE) in a wireless communication network. The UE may determine a location of the UE, and identify, from set of transmit power reduction settings stored at the UE, a power reduction indicator corresponding to the location and to a frequency range of an uplink transmission. Further, the aspects include the UE transmitting a first uplink transmission in the frequency range at a first transmit power controlled based on the power reduction indicator when the power reduction indicator is found. In another aspect, the UE transmits a second uplink transmission in the frequency range at a second transmit power controlled based on a network-signaled power reduction value when the power reduction indicator corresponding to the location is not found at the UE.