Abstract:
In the network-based group management and floor control mechanism disclosed herein, a server may receive a request to occupy a shared IoT resource from a member device in an IoT device group and transmit a message granting the member IoT device permission to occupy the shared IoT resource based on one or more policies. For example, the granted permission may comprise a floor that blocks other IoT devices from accessing the shared IoT resource while the member IoT device holds the floor. Furthermore, the server may revoke the permission if the member IoT device fails to transmit a keep-alive message before a timeout period expires, a high-priority IoT device pre-empts the floor, and/or based on the policies. Alternatively, the server may make the shared IoT resource available if the member IoT device sends a message that voluntarily releases the floor.
Abstract:
The disclosure is related to determining an association among Internet of Things (IoT) devices. A first IoT device receives an identifier of a second IoT device, obtains a schema of the second IoT device based on the identifier of the second IoT device, and determines whether or not there is an association between the first IoT device and the second IoT device based on a schema of the first IoT device and the schema of the second IoT device, where the schema of the first IoT device comprises schema elements and corresponding values of the first IoT device and the schema of the second IoT device comprises schema elements and corresponding values of the second IoT device.
Abstract:
An aspect enables context aware actions among heterogeneous Internet of Things (IoT) devices. An IoT device receives data representing a context of each of a first set of IoT devices, receives data representing a current state of each of a second set of IoT devices, and determines an action to perform at a target IoT based on the received data. An aspect verifies an implied relationship between a first user and a second user by detecting an interaction between a first user device belonging to the first user and a second user device belonging to the second user, storing information related to the interaction in a first interaction table associated with the first user device, assigning a relationship identifier to the second user based, at least in part, on the information related to the interaction, and determining whether or not the assigned relationship identifier is correct.
Abstract:
Methods, devices, non-transitory processor-readable instructions, and systems for a VOIP application server associated with a VOIP application to improve performance of a target computing device for IP communications via the VOIP application. An embodiment method may include determining whether the target computing device is likely to be called using the VOIP application during a contact period, and directing the target computing device to adjust a performance setting for receiving an IP communication in response to determining a likelihood the device will be called during the contact period. When a call is likely, the performance setting may be raised via transmitting dummy traffic to target computing device, activating a quality-of-service on an Rx interface corresponding to the VOIP application and the target computing device, and/or transmitting a message directing the target computing device to utilize an aggressive slot cycle index setting or an aggressive discontinuous reception setting.
Abstract:
Embodiments are directed to selecting a physical layer for an access terminal's (AT's) participation in a communication session. In an embodiment, the AT can register its priorities for multiple physical-layer systems as well as contact information by which an application server can contact the AT over each system. The AT selectively updates the system prioritization and/or contact information. When the AT joins or initiates a communication session, the application server supports the AT on a highest-priority system through which the AT can be contacted. The system supporting the AT's session can change upon request by the AT, the initiative of the application server and/or a detected triggering event. In a further embodiment, multiple systems can be used concurrently to support the AT's session, such that the AT can send and/or receive signaling and/or media for at least a portion of the communication session over the multiple systems concurrently.
Abstract:
In an embodiment, a control device configures session parameters (e.g., related to an audio component, a video component, an eye tracking component, etc.) for a coordinated display session. The control devices maps, for proximate client devices registered as presentation devices for the coordinated display session, a different portion of visual data for the coordinated display session to respective display screens, and delivers the mapped portions of the visual data to the proximate client devices for presentation by the respective display screens during the coordinated display session. The control device obtains eye movement monitoring feedback from a set of eye tracking devices, the eye movement monitoring feedback characterizing eye movements of a viewing population of the coordinated display session. The control device modifies the session parameters associated with the coordinated display session based on the eye movement monitoring feedback.
Abstract:
The disclosure is directed to conducting group communications. An embodiment receives information defining a group communication from a first network, detects an availability of at least one local uni-directional radio broadcast network outside the first network, transmits an acknowledgment indicating an intention to connect to the at least one local uni-directional radio broadcast network, and monitors the group communication on the at least one local uni-directional radio broadcast network.
Abstract:
Embodiments are disclosed that include systems and methods performed by a processor of a designated platoon vehicle, including establishing an out-of-band vehicle-to-vehicle (V2V) communication link with a target vehicle in response to determining a change in the quantity of vehicles included in the platoon is approved, wherein the out-of-band V2V communication link extends laterally more than a first V2V communication link with an initially-adjacent platoon vehicle, expanding the first V2V communication link for maintaining communications with the initially-adjacent platoon vehicle while changing a relative positioning between the designated platoon vehicle and the initially-adjacent platoon vehicle, establishing a second V2V communication link with the target vehicle, and ending the out-of-band V2V communication link in response to the target vehicle taking the place of the initially-adjacent platoon vehicle immediately adjacent to and either in front of or behind the designated platoon vehicle.
Abstract:
Apparatus and methods establish and maintain a plurality of profiles defining different personalities in association with a single user account. Further, apparatus and methods described herein enable a group communication session including receiving a request from an originator to initiate a group communication session, where the request identifies a plurality of participants. Further, these aspects include selecting an originator profile from a plurality of different established originator profiles to be displayed to each of the plurality of participants, where each of the plurality of different established originator profiles is associated with a single user account. Further, in these aspects, a first selected originator profile to be displayed to a first one of the plurality of participants differs from a second selected originator profile to be displayed to a second one of the plurality of participants.
Abstract:
The disclosure relates to collaborative intelligence and decision-making in an Internet of Things (IoT) device group. In particular, various IoT devices in the group may be interdependent, whereby a decision that one IoT device plans may impact other IoT devices in the group. Accordingly, in response to an IoT device planning a certain decision (e.g., to transition state or initiate another action), the IoT devices in the group may collaborate using distributed intelligence prior to taking action on the planned decision. For example, a recommendation request may be sent to other IoT devices in the group, which may then analyze relationships within the group to assess potential impacts associated with the planned decision and respond to approve or disapprove the planned decision. Based on the responses received from the other IoT devices, the IoT device may then determine whether to take action on the planned decision.