Abstract:
An integrated circuit and a method of making the same. The integrated circuit includes a semiconductor substrate having a major surface. The integrated circuit also includes a directional light sensor. The directional light sensor includes a plurality of photodetectors located on the major surface. The directional light sensor also includes one or more barriers, wherein each barrier is positioned to shade one or more of the photodetectors from light incident upon the integrated circuit from a respective direction. The directional light sensor is operable to determine a direction of light incident upon the integrated circuit by comparing an output signal of at least two of the photodetectors.
Abstract:
Disclosed is an integrated circuit comprising a substrate (10); and an optical CO2 sensor comprising: first and second light sensors (12, 12′) on said substrate, said second light sensor being spatially separated from the first light sensor; and a layer portion (14) including an organic compound comprising at least one amine or amidine functional group over the first light sensor; wherein said integrated circuit further comprises a signal processor (16) coupled to the first and second light sensor for determining a difference in the respective outputs of the first and second light sensor. An electronic device comprising such a sensor and a method of manufacturing such an IC are also disclosed.
Abstract:
In one example, a thermal conductivity gas sensor is disclosed. The sensor includes a sensing element and an amplification material coupled to the sensing element. The amplification material has a target gas dependent thermal diffusivity. The sensing element measures the thermal diffusivity of the amplification material to determine a target gas concentration.
Abstract:
A sensor package comprises a sensor chip bonded to an intermediate carrier, with the sensor element over an opening in the carrier. The package is for soldering to a board, during which the intermediate carrier protects the sensor part of the sensor chip.
Abstract:
Disclosed is an integrated circuit comprising a substrate (10) including at least one light sensor (12); an interconnect structure (20) over the substrate; at least one passivation layer (30) over the interconnect structure, said passivation layer including a first area over the at least one light sensor; and a gas sensor such as a moisture sensor (50) at least partially on a further area of the at least one passivation layer, wherein the gas sensor comprises a gas sensitive layer (46′) in between a first electrode (42) and a second electrode (44), the gas sensitive layer further comprising a portion (46″) over the first area. A method of manufacturing such an IC is also disclosed.
Abstract:
Disclosed is an integrated circuit comprising a substrate including at least one light sensor; an interconnect structure over the substrate; at least one passivation layer over the interconnect structure, said passivation layer including a first area over the at least one light sensor; and a gas sensor such as a moisture sensor at least partially on a further area of the at least one passivation layer, wherein the gas sensor comprises a gas sensitive layer in between a first electrode and a second electrode, the gas sensitive layer further comprising a portion over the first area. A method of manufacturing such an IC is also disclosed.
Abstract:
An isolated semiconductor circuit comprising: a first sub-circuit and a second sub-circuit; a backend that includes an electrically isolating connector between the first and second sub-circuits; a lateral isolating trench between the semiconductor portions of the first and second sub-circuits, wherein the lateral isolating trench extends along the width of the semiconductor portions of the first and second sub-circuits, wherein one end of the isolating trench is adjacent the backend, and wherein the isolating trench is filled with an electrically isolating material.
Abstract:
An integrated circuit and a method of making the same. The integrated circuit includes a semiconductor substrate. The integrated circuit also includes a relative humidity sensor on the substrate. The relative humidity sensor includes a first sensor electrode, a second sensor electrode, and a humidity sensitive layer covering the first and second electrodes. The integrated circuit further includes a thermal conductivity based gas sensor on the substrate. The thermal conductivity based gas sensor has an electrically resistive sensor element located above the humidity sensitive layer.
Abstract:
An integrated heat sink array is introduced in SOI power devices having multiple unit cells, which can be used to reduce the temperature rise in obtaining more uniform temperature peaks for all the unit cells across the device area, so that the hot spot which is prone to breakdown can be avoided, thus the safe operating area of the device can be improved. Also the array sacrifice less area of the device, therefore results in low Rdson.
Abstract:
An integrated heat sink array is introduced in SOI power devices having multiple unit cells, which can be used to reduce the temperature rise in obtaining more uniform temperature peaks for all the unit cells across the device area, so that the hot spot which is prone to breakdown can be avoided, thus the safe operating area of the device can be improved. Also the array sacrifice less area of the device, therefore results in low Rdson.