Abstract:
One example discloses a charging system, including: a charging device configured to be coupled to a device to be charged; wherein the charging device includes a set of hardware defined charging attributes; wherein the charging device is configured to reconfigure the hardware defined charging attributes based on a specific charging protocol received from the device to be charged; and wherein the charging device is configured to output charging power to the device to be charged as defined by the specific charging protocol.
Abstract:
A wireless charging apparatus and method utilizing a secure element is disclosed. Illustratively, a receiver containing a secure element securely communicates with a charging pad also equipped with a secure element. The communication can be used to establish the identity of the receiver and facilitate billing for the wireless charging. The charging pad may further communicate in a secure manner with a server to authenticate the identity and other information about the receiver before providing wireless charging. Direct communication between the receiver and server is also contemplated.
Abstract:
According to an aspect of the invention, a tag system for facilitating a purchase of a sellable item is conceived, the tag system comprising an anti-theft tag and an NFC tag, wherein said NFC tag is arranged to support a payment transaction for purchasing the sellable item, and wherein the NFC tag is further arranged to deactivate the anti-theft tag when the payment transaction has been completed.
Abstract:
A wireless charger is disclosed. The charger contains a coil with a plurality of taps, thereby facilitating charging according to different frequencies and standards. Detection of the standard appropriate to a particular receiver may be accomplished by modulation of the power carrier or via low power modalities, including NFC or Bluetooth.
Abstract:
The present invention relates to a system and method for determining of a mechanical deformation of a battery based on an influence on an ultra wideband, UWB, signal 120, which is transmitted between two UWB units of the system, where one of the UWB units is part of a control module of the system, wherein the control module also comprising a control unit being configured to be connected to a battery cell 116 of the battery 118 for controlling and/or monitoring the battery cell 116.
Abstract:
A task performance system and method including multiple transmitters and multiple task devices distributed in a local area. Each task device includes communication circuitry, a memory, a controller, and output circuitry. The communication circuitry receives timing information and position information from the transmitters. The transmitters may also transmit task information including task location parameters that define the task area. The task area is divided into subblocks each having a corresponding task value. The controller uses the received information to determine its location and accesses the memory when located within the task area to retrieve a corresponding task value based on subblock location. The task information includes task values which may define a different task for each subblock. The controller activates output circuitry in accordance with the task value to perform a corresponding task. The output circuitry may include one or more light sources, a speaker, a vibration device, etc.
Abstract:
Wireless power is provided to a WPP-compliant wireless device by generating a first radio frequency (RF) signal at a first frequency. The transmitter circuit is inductively coupled to the compliant wireless device using the first RF signal. A second RF signal is generated at a second frequency. The presence of a WPP-noncompliant wireless device is detected by detecting a third RF signal at a third frequency that is a harmonic of the second frequency. The non-compliant wireless device is protected by reducing, in response to detecting the third RF signal, a signal strength for the first RF signal.
Abstract:
A method for performing foreign object detection in an inductive wireless power transfer system is disclosed. In the embodiment, the method involves obtaining measurements from a base station of a wireless power transfer system during charging and determining transmitter energy loss in a power transmitter, Ptxloss, using the obtained measurements, wherein the transmitter energy loss, Ptxloss, is a function of at least Vcap and PTx, wherein Vcap is proportional to the voltage amplitude across the capacitor of an LC tank circuit in a power transmitter and PTx is the total power supplied to the power transmitter. The method also involves detecting the presence of a foreign object in response to the estimated transmitter energy loss.
Abstract:
A processor for a radio circuit is disclosed. The processor includes a full spectrum receiver and a white space classifier. The full spectrum receiver is configured to receive an analogue radio signal comprising multiple channels within a frequency band and transform the analogue radio signal to a digital radio signal. The full spectrum receiver is also configured to transform the digital radio signal from a time domain signal to a frequency domain signal. The white space classifier is configured to identify an unused channel within the frequency band using the frequency domain signal derived from the analogue radio signal.
Abstract:
A gateway device includes processing circuitry used to detect that an external mobile node is within a predefined distance from the gateway device. The processing circuitry of the gateway device is used to determine, a spatial movement of the mobile node. The gateway device executes a logical handover of the mobile node from a first localization system to a second localization based on the determined spatial movement of the mobile device.