摘要:
A method that includes forming a chamber in a substrate, forming a silicon layer overlying the chamber, etching the silicon layer to remove selected regions and retain a selected portion overlying the chamber, the selected portion being at a location and having dimensions that correspond to a location and to dimensions of a nozzle, and forming a first metal layer adjacent to the selected portion. The method also includes forming a path in the substrate to expose the chamber concurrently with removing the selected portion of the silicon layer to expose the nozzle, the nozzle being in fluid communication with the path, the chamber, and a surrounding environment.
摘要:
A semiconductor device includes a semiconductor material substrate, an opto-electric component formed on the substrate, and a first transparent layer formed on an upper surface of the substrate over the component, the layer having a planar upper surface with a cavity formed therein. The first transparent layer has a selected thickness and a first index of refraction. The semiconductor device further includes a lens having a second index of refraction, the lens being formed in the cavity and having a planar upper surface. An upper surface of the lens and the upper surface of the transparent layer may be coplanar, or alternatively, they may lie in separate planes. The semiconductor device may also include a second transparent layer formed over the first layer and lens, as a passivation layer. The first transparent layer may be silicon dioxide, while the lens may be a flowable dielectric.
摘要:
A method that includes forming a chamber in a substrate, forming a silicon layer overlying the chamber, etching the silicon layer to remove selected regions and retain a selected portion overlying the chamber, the selected portion being at a location and having dimensions that correspond to a location and to dimensions of a nozzle, and forming a first metal layer adjacent to the selected portion. The method also includes forming a path in the substrate to expose the chamber concurrently with removing the selected portion of the silicon layer to expose the nozzle, the nozzle being in fluid communication with the path, the chamber, and a surrounding environment.
摘要:
An integrated semiconductor heating assembly includes a semiconductor substrate, a chamber formed therein, and an exit port in fluid communication with the chamber, allowing fluid to exit the chamber in response to heating the chamber. The integrated heating assembly includes a first heating element adjacent the chamber, which can generate heat above a selected threshold and bias fluid in the chamber toward the exit port. A second heating element is positioned adjacent the exit port to generate heat above a selected threshold, facilitating movement of the fluid through the exit port away from the chamber. Addition of the second heating element reduces the amount of heat emitted per heating element and minimizes thickness of a heat absorption material toward an open end of the exit port. Since such material is expensive, this reduces the manufacturing cost and retail price of the assembly while improving efficiency and longevity thereof.
摘要:
A method includes growing a first oxide region concurrently with a second oxide region in a substrate and forming an inlet path to the first oxide region, the inlet path exposing a first surface of the first oxide region. The method also includes removing the first oxide region to form a chamber, forming a first MOS transistor adjacent the second oxide region, and forming a second MOS transistor separated from the first MOS transistor by the second oxide region.
摘要:
A method includes growing a first oxide region concurrently with a second oxide region in a substrate and forming an inlet path to the first oxide region, the inlet path exposing a first surface of the first oxide region. The method also includes removing the first oxide region to form a chamber, forming a first MOS transistor adjacent the second oxide region, and forming a second MOS transistor separated from the first MOS transistor by the second oxide region.
摘要:
A thin film power transistor includes a plurality of first doped regions over a substrate and a second doped region forming a body. At least a portion of the body is disposed between the plurality of first doped regions. The thin film power transistor also includes a gate over the substrate. The thin film power transistor further includes a dielectric layer, at least a portion of which is disposed between (i) the gate and (ii) the first and second doped regions. In addition, the thin film power transistor includes a plurality of contacts contacting the plurality of first doped regions, where the plurality of first doped regions forms a source and a drain of the thin film power transistor. The first doped regions could represent n-type regions (such as N− regions), and the second doped region could represent a p-type region (such as a P− region). The first doped regions could also represent p-type regions, and the second doped region could represent an n-type region.
摘要:
A silicide having variable internal metal concentration tuned to surface conditions at the interface between the silicide and adjoining layers is employed within an integrated circuit. Higher silicon/metal (silicon-rich) ratios are employed near the interfaces to adjoining layers to reduce lattice mismatch with underlying polysilicon or overlying oxide, thereby reducing stress and the likelihood of delamination. A lower silicon/metal ratio is employed within an internal region of the silicide, reducing resistivity. The variable silicon/metal ratio is achieved by controlling reactant gas concentrations or flow rates during deposition of the silicide. Thinner silicides with less likelihood of delamination or metal oxidation may thus be formed.
摘要:
Connection between optical fibers and optical components within a semiconductor substrate. A lens is created at the front of a semiconductor substrate. A tapered hole is created in the back of the substrate exposing part or all of the surface of the lens. An optical component is formed or affixed at the front surface of the substrate. A volume of transparent adhesive is placed in the hole, followed by an optical fiber, which is thus coupled to the surface of the lens. A light guide is created on the front of the substrate overlying the lens to direct optical signals between the optical fiber inserted in the tapered hole and the optical component on the surface of the substrate.
摘要:
Connection between optical fibers and optical components within a semiconductor substrate. A lens is created at the front of a semiconductor substrate. A tapered hole is created in the back of the substrate exposing part or all of the surface of the lens. An optical component is formed or affixed at the front surface of the substrate. A volume of transparent adhesive is placed in the hole, followed by an optical fiber, which is thus coupled to the surface of the lens. A light guide is created on the front of the substrate overlying the lens to direct optical signals between the optical fiber inserted in the tapered hole and the optical component on the surface of the substrate.