Abstract:
Aspects of the disclosure pertain to an apparatus for detecting timing errors including an analog to digital converter circuit, a diversity loop detector and a timing error calculation circuit. The analog to digital converter circuit is operable to convert an input signal into a series of digital samples. The diversity loop detector is operable to apply a data detection algorithm to a plurality of signals derived from the series of digital samples at different phase offsets, to select one of the phase offsets, and to yield a detected output with the selected phase offset. The timing error calculation circuit is operable to calculate a timing error of the analog to digital converter circuit based at least in part on the selected phase offset.
Abstract:
A method for estimating error probability of LDPC codes includes ordering LDPC codes according to features in each code with known error characteristics. The method includes identifying features in each LDPC code having known error characteristics; adding each code to one or more categories based on the existence of such features; and ranking the LDPC codes according to the level of error risk.
Abstract:
Various embodiments of the present invention provide systems and methods for data processing that includes selectively reporting results out of order or in order.
Abstract:
Aspects of the disclosure pertain to an apparatus for detecting timing errors including an analog to digital converter circuit, a diversity loop detector and a timing error calculation circuit. The analog to digital converter circuit is operable to convert an input signal into a series of digital samples. The diversity loop detector is operable to apply a data detection algorithm to a plurality of signals derived from the series of digital samples at different phase offsets, to select one of the phase offsets, and to yield a detected output with the selected phase offset. The timing error calculation circuit is operable to calculate a timing error of the analog to digital converter circuit based at least in part on the selected phase offset.
Abstract:
A memory interleaving apparatus includes first and second interleavers. The first interleaver selectively interleaves information stored in a first memory in response to a sector select signal. The second interleaver selectively interleaves information stored in a second memory in response the sector select signal. The first interleaver is coupled with the second interleaver. A memory interleaving system includes an interleaver and a storage device. The interleaver is associated with a first sector size and a second sector size. The interleaver selectively interleaves information stored in a first memory and/or a second memory in response to a sector select signal. The storage device selectively provides the first masking seed and/or a second masking seed to the interleaver in response to the sector select signal. Corresponding methods are also disclosed.
Abstract:
A method for estimating error probability of LDPC codes includes ordering LDPC codes according to features in each code with known error characteristics. The method includes identifying features in each LDPC code having known error characteristics; adding each code to one or more categories based on the existence of such features; and ranking the LDPC codes according to the level of error risk.
Abstract:
A data processing system includes a digital data input operable to receive digital data, a digital data values input operable to receive values of the digital data, a loop pulse response estimation circuit operable to calculate a loop pulse response based on the digital data and the values of the digital data and based at least in part on past values of the loop pulse response, and a scaling circuit operable to scale the loop pulse response based at least in part on an absolute sum of the loop pulse response to yield a scaled loop pulse response.
Abstract:
Systems and method relating generally to data processing, and more particularly to systems and methods for decoding information. Some disclosed systems include a first data decoding circuit, a second data decoding circuit, and a data output circuit. The second data decoding circuit is coupled to the first data decoding circuit and the data output circuit. The second data decoding circuit is operable to apply a finite alphabet iterative decoding algorithm to the first decoded output to yield a second decoded output.
Abstract:
A communication channel structure and a decoding method supported by such a communication channel structure are disclosed. Such a communication channel includes a digital filter configured for filtering an input signal and two quantizer configured for quantizing the filtered signal. A first quantizer is utilized to quantize the filtered signal to produce a first quantized sample having a first precision and a second quantizer is utilized to quantize the filtered signal to produce a second quantized sample having a second precision, wherein the second precision is different from the first precision. The communication channel also includes an iterative decoder configured for utilizing the first quantized sample for a first global iteration of a decoding process and utilizing the second quantized sample for at least one subsequent global iteration of the decoding process.