Abstract:
A method, performed by a user equipment, is described for uplink transmission in a wireless communication system. A first time alignment (TA) to a first cell belonging to a first timing advance group (TAG) is performed. A second TA to a second cell belonging to a second TAG is performed. A determination is made as to whether to transmit or drop a sounding reference signal (SRS) on a subframe. The SRS is determined to be dropped based on whether the first and second TAGs are configured, whether at least one symbol of the subframe is used to transmit the SRS toward the second cell of the second TAG and also used to transmit a physical uplink shared channel (PUSCH) toward the first cell of the first TAG, and whether a total uplink transmission power exceeds a maximum value.
Abstract:
A user equipment (UE) is provided for transmitting an uplink signal in a wireless communication system The UE sets up a sounding reference signal (SRS) configuration for a first serving cell that includes information for an SRS transmission, and determines an SRS subframe in which an SRS and a physical uplink shared channel (PUSCH) for the first serving cell are simultaneously triggered according to the SRS configuration. If a SRS transmission on the SRS subframe for the first serving cell is overlapped with an uplink transmission for a second serving cell, the UE transmits the SRS in the SRS subframe if a total uplink transmission power does not exceeds the UE's maximum transmit power on the overlapped portion. If the SRS is triggered by the SRS configuration and timing advance groups are configured to the UE, the UE transmits the PUSCH on the SRS subframe for the first serving cell.
Abstract:
A method is provided for uplink transmission in a wireless communication system. A user equipment (UE) determines whether to transmit both a physical uplink shared channel (PUSCH) and a sounding reference signal (SRS), or drop the SRS and transmit only the PUSCH but dropping the SRS when the UE determines satisfaction of all of at least three conditions including: a first condition specifying that a plurality of timing advance groups (TAGs) including a first TAG and a second TAG are configured, a second condition specifying that at least one symbol of a subframe n which is used to transmit the SRS toward a first cell belonging to the first TAG is overlapped with a subframe n+1 on which the PUSCH is transmitted toward a second cell belonging to the second TAG and a third condition specifying that a total uplink transmission power exceeds a maximum value.
Abstract:
Provided are a method for a terminal transmitting uplink control information (UCI)through a physical uplink control channel (PUCCH) in a wireless communication system, and a terminal using the method. A transmission power to be applied to the uplink control channel is determined on the basis of a value subordinate to a PUCCH format, and at least one type of UCI is transmitted from the physical uplink control channel by using the transmission power that is determined, wherein when the PUCCH format is PUCCH format 3, and the at least one type of UCI includes acknowledgement/negative-acknowledgement(ACK/NACK) and periodic channel state information (CSI), the value subordinate to the PUCCH format is determined on the basis of the number of bits of the ACK/NACK and the number of bits of the periodic CSI.
Abstract:
A method for uplink transmission in a wireless communication system, the method includes determining, by a user equipment (UE), whether the first uplink signal to be transmitted toward a first cell belonging to a first timing advance group (TAG) at an nth subframe overlaps the second uplink signal to be transmitted toward a second cell belonging to a second TAG at an (n+1)st subframe; dropping, by the UE, the first uplink signal at the nth subframe, if a total transmission power including the first and second uplink signals exceeds a maximum transmit power, where n is an integer≧1; and transmitting the second uplink signal without the first uplink signal which is dropped.
Abstract:
Provided are a method and an apparatus for transmitting uplink control information performed by a user equipment in a wireless communication system. The method comprises the steps of: receiving a first parameter for indicating whether to simultaneously transmit a first combination of an acknowledgement/negative-acknowledgement (ACK/NACK) and a channel quality indicator (CQI), and a second parameter for indicating whether to multiplex a second combination of an ACK/NACK and the CQI and transmitting same as a second physical uplink control channel (PUCCH) format; and multiplexing the first combination of the ACK/NACK or the second combination of ACK/NACK with the CQI and transmitting same as a first PUCCH format or the second PUCCH format, based on the first parameter and the second parameter.
Abstract:
A method is provided for uplink transmission in a wireless communication system. A user equipment (UE) configures multiple timing advance groups (TAGs), determines a power for transmitting a sounding reference signal (SRS) toward a first serving cell in a first TAG, determines a power for transmitting an uplink channel toward a second serving cell in a second TAG, determines whether a portion of a last symbol of an ith subframe for transmitting the SRS toward the first serving cell in the first TAG is overlapped with an (i+1)th subframe for transmitting the uplink channel toward the second serving cell in the second TAG, and drops the SRS transmission on the last symbol in the ith subframe if a total power of the SRS and the uplink channel exceeds a maximum value on the overlapped portion of the last symbol.
Abstract:
Method and apparatus of transmitting PLCP header for sub 1 GHz communication is disclosed. A method of transmitting a physical layer convergence protocol(PLCP) header may comprise generating a short training field (STF) sequence over 1 orthogonal frequency division multiplexing (OFDM) symbol, transforming the STF sequence to repeated waveform patterns in time domain and transmitting the PLCP header comprising the STF sequence, wherein the STF sequence may be a sequence transformed to repeated waveform patterns in time domain by inverse discrete Fourier transform (IDFT).