Abstract:
A method and terminal are described for allocating resources for transmitting a signal in a multiple-input multiple-output (MIMO) wireless communication system. An uplink signal is transmitted using L layers at a terminal in a multiple-input multiple-output (MIMO) wireless communication system. Modulation symbols are generated by modulating output bit sequences of an interleaver matrix by a unit of log2Q bits, where Q is a modulation order. Each of the output bit sequences has a size of L·log2Q bits. The modulation symbols are mapped to the L layers and transmitted by using the L layers. The output bit sequences are generated by reading out entries of the interleaver matrix, column by column.
Abstract:
A method and communication apparatus for controlling transmission powers in a wireless communication system supporting a plurality of component carriers are described. When a sounding reference symbol (SRS) transmission overlaps with a physical uplink shared channel (PUSCH) transmission and a physical uplink control channel (PUCCH) transmission in a time domain, a check is made as to whether a total of a PUSCH transmission power for the PUSCH transmission on a first component carrier, a PUCCH transmission power for the PUCCH transmission on the first component carrier and a SRS transmission power for the SRS transmission on a second component carrier exceeds a maximum transmission power configured for the communication apparatus. The SRS is dropped if the total of the PUSCH transmission power, the PUCCH transmission power and the SRS transmission power exceeds the maximum transmission power configured for the communication apparatus.
Abstract:
A method of power saving in a wireless local area network, and a wireless apparatus therefore are discussed. The method according to one embodiment includes acquiring a transmission opportunity (TXOP), receiving a signal field, the signal field including a group identifier, a number indicator and a power saving indicator, the group identifier indicating a group of recipients, the number indicator indicating a number of spatial streams, the power saving indicator indicating that the transmitting device allows the wireless device to enter a doze state. The method according to the embodiment further includes entering the doze state until the end of the TXOP if the power saving indicator indicates an allowance of entering the doze state during the TXOP, the wireless device is a member of the group of recipients, and the number of spatial streams to be received by the wireless device is equal to zero.
Abstract:
A method for transmitting and receiving uplink signals using an optimized rank 3 codebook is disclosed. The optimized rank 3 codebook includes 6 precoding matrix groups, each of which has 1 variable having an amplitude of 1. Preferably, the optimized 4Tx rank 3 codebook has 12 preceding matrix, two precoding matrixes are selected from each the above 6 precoding matrix groups considering chordal distance and the number of precoding matrix.
Abstract:
The present disclosure relates to a method in which a base station transmits signals to a relay node in a multiuser multi-antenna (MIMO) wireless communication system. More particularly, the method includes: allocating one or more antenna ports to one or more relay nodes, respectively; mapping each of a plurality of downlink grant signals for the one or more relay nodes to a preset resource domain from among resource domains corresponding to one of the allocated antenna ports; mapping uplink grant signals or data signals for the one or more relay nodes to the resource domains corresponding to the allocated antenna ports; and transmitting the mapped signals to the one or more relay nodes.
Abstract:
Provided are a method and an apparatus for transmitting a message through a terminal in a wireless communication system. The terminal receives positioning reference signals (PRS) from a reference cell and at least one of the neighbor cells, receives an auxiliary data provision message including a reference cell PRS muting sequence for indicating a muting pattern of the PRS transmitted through the reference cell and a neighbor cell PRS muting sequence for indicating the muting pattern of the PRS transmitted through at least one of the neighbor cells from an enhanced serving mobile location center (E-SMLC), and transmits a reference signal time difference (RSTD) measured on the basis of the PRS received from the reference cell and the at least one of the neighbor cells to the E-SMLC.
Abstract:
A method of transmitting a training signal in a Wireless Local Area Network (WLAN) system includes generating one or more first training signals for a first destination station and one or more second training signals for a second destination station by applying a mapping matrix P to a training signal generation sequence, mapping the first training signals and the second training signals to a plurality of antennas according to an antenna mapping matrix, and performing Inverse Fast Fourier Transform (IFFT) on each of the first training signals and the second training signals mapped to the plurality of antennas and transmitting the training signals through the plurality of antennas.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method is described for transmitting a control signal in a wireless communication system. A wireless communication system supporting multiple antennas, transmits, by a user equipment (UE), a control signal on an uplink control channel at a subframe i. Furthermore, an uplink transmit power PPUCCH(i) for the uplink control channel at the subframe i is determined based on a mathematical equation. Additionally, the mathematical equation includes a min function and uses parameters including PCMAX(i), P0—PUCCH, ΔF—PUCCH(F), g(i), PL, Δ(M) and PL where PCMAX(i) is a configured UE transmit power in subframe i, P0—PUCCH is a parameter composed based on provisions by a higher layer, ΔF—PUCCH(F) is a parameter provided by the higher layer, PL is a downlink pathloss estimate calculated in the UE, and g(i) is a value relating to a UE specific value.
Abstract:
A method of supporting Hybrid Automatic Repeat Request (HARQ) includes receiving an initial uplink grant on a downlink channel, transmitting uplink data on an uplink channel using the initial uplink grant, receiving a request for retransmission of the uplink data, determining at least one transmission parameter of a channel quality indicator (CQI) from the initial uplink grant, multiplexing retransmission data of the uplink data with the CQI, and transmitting the multiplexed data on the uplink channel. Amount of resources for transmission of the CQI is determined based on the at least one transmission parameter.