Abstract:
A scrambling sequence generation method is disclosed for reference signals, data, and downlink and uplink control channels. The scrambling sequence generation method determines an initial seed value used to calculate the scrambling sequence. The initial seed value is based on different parameters relating to the to be transmitted signals, and some of these parameters are explicitly defined for New Radio.
Abstract:
Embodiments of the present disclosure describe systems and methods for mitigating interference in wireless networks. Various embodiments may include signaling of quasi co-location and resource element mapping of an interfering physical downlink shared channel. Other embodiments may be described and/or claimed.
Abstract:
Techniques for detecting puncturing of a first PDSCH (physical downlink shared channel) associated with a UE (user equipment) by a second PDSCH with a shorter TTI (transmission time interval) are discussed. A base station (e.g., Evolved NodeB or eNB) can configure the UE for potential puncturing and/or parameter(s) of the second PDSCH. The UE can detect puncturing of the first PDSCH based on the configuration, and can discard punctured symbols to mitigate interference from the second PDSCH.
Abstract:
Embodiments of the present disclosure are directed towards devices and methods for discovering and waking up dormant access nodes in cellular networks. In one embodiment, the user equipment may be configured with information to assist in determining a discovery zone of discovery signals transmitted by cells in a network. In some embodiments, the information may include a duration of a discovery zone.
Abstract:
Embodiments of an enhanced node B (eNB) and methods for network-assisted interference cancellation with reduced signaling in a 3GPP LTE network are generally described herein. In some embodiments, the number of transmission options is reduced by introducing a smaller signaling codebook. In some embodiments, higher-layer feedback from the UE to the eNodeB is established to inform the eNB about certain NA-ICS capabilities of the UE. In some embodiments, the number of signaling options is reduced by providing only certain a priori information. In some embodiments, correlations in the time and/or frequency domain are exploited for reducing the signaling message. In some embodiments, differential information is signaled in the time and/or frequency domain for reducing the signaling message.
Abstract:
Methods, systems, and devices for modulation and coding scheme selection and configuration. A mobile communication device includes a table component, a table selection component, and a communication component. The table component is configured to maintain two or more tables each having entries for a plurality of available modulation schemes. The two or more tables include a default table and a secondary table. The default table and the secondary table have a matching number of entries, and the secondary table includes an entry corresponding to a 256-QAM scheme. The table selection component is configured to select a selected table from one of the default table and the secondary table. The communication component is configured to receive and process a communication from a base station based on a modulation and coding scheme of the selected table.
Abstract:
Embodiments of the present disclosure describe methods, systems, and devices for modulation and coding scheme signaling for a common control channel. Various embodiments may include restricting transmit block size selection for downlink control information format 1A having a cyclic-redundancy check scrambled by a paging radio network temporary identifier, a system information radio network temporary identifier, or a random access radio network temporary identifier. Other embodiments may be described or claimed.
Abstract:
Provided herein are method and apparatus for beam recovery. An embodiment provides an apparatus for a user equipment (UE) including a radio frequency (RF) interface; and processing circuitry configured to: determine, in response to a beam failure, a channel for transmission of a beam failure recovery request as one of: a Physical Uplink Control Channel (PUCCH), a non-contention based Physical Random Access Channel (PRACH), and a contention based Physical Random Access Channel (PRACH); and encode the beam failure recovery request for transmission to an access node via the determined channel using the RF interface. At least some embodiments allow for transmission of a beam failure recovery request for beam recovery, allow for beam failure detection or new Tx beam identification, and allow for determining whether to configure a scheduling delay between a PDCCH and a PDSCH.
Abstract:
Codebook designs are disclosed for full-dimensional multiple-input-multiple output (FD-MIMO) wireless cellular systems. The FD-MIMO cookbooks employ channel state information reference signals (CSI-RS). The codebook designs are used in beamforming CSI-RSs by the enhanced nodeB (eNB), where the CSI-RS is sent to the user equipment (UE), enabling the UE to perform channel estimation. The codebooks support beam selection, co-phasing between polarizations, and beam combining.
Abstract:
A user equipment (UE) can process signals including a first synchronization signal (SS) and a second SS. The first SS and the second SS are beamformed with transmit beams and transmitted on subbands in a first set of symbols, for the first SS, and a second set of symbols, for the second SS. The UE can detect the first SS in the first set of symbols, and measure beam qualities of the transmit beams on the subbands in at least one of the first set of symbols or the second set of symbols. The UE can select one or more transmit beams and corresponding one or more subbands based on the measured beam qualities. The UE can detect the second SS on the selected subbands in the second set of symbol, and each of subbands in the first and second sets of symbols is associated with a transmit beam.