LINK-PHYSICAL LAYER INTERFACE ADAPTER
    11.
    发明申请

    公开(公告)号:US20180095923A1

    公开(公告)日:2018-04-05

    申请号:US15283309

    申请日:2016-10-01

    Abstract: An interface adapter to identify a first ready signal from a first link layer-to-physical layer (LL-PHY) interface of a first communication protocol indicating readiness of a physical layer of the first protocol to accept link layer data. The interface adapter generates a second ready signal compatible with a second LL-PHY interface of a second communication protocol to cause link layer data to be sent from a link layer of the second communication protocol according to a predefined delay. A third ready signal is generated compatible with the first LL-PHY interface to indicate to the physical layer of the first communication protocol that the link layer data is to be sent. The interface adapter uses a shift register to cause the link layer data to be passed to the physical layer according to the predefined delay.

    Bimodal PHY for low latency in high speed interconnects

    公开(公告)号:US11354264B2

    公开(公告)日:2022-06-07

    申请号:US17184737

    申请日:2021-02-25

    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.

    Link-physical layer interface adapter

    公开(公告)号:US10152446B2

    公开(公告)日:2018-12-11

    申请号:US15283309

    申请日:2016-10-01

    Abstract: An interface adapter to identify a first ready signal from a first link layer-to-physical layer (LL-PHY) interface of a first communication protocol indicating readiness of a physical layer of the first protocol to accept link layer data. The interface adapter generates a second ready signal compatible with a second LL-PHY interface of a second communication protocol to cause link layer data to be sent from a link layer of the second communication protocol according to a predefined delay. A third ready signal is generated compatible with the first LL-PHY interface to indicate to the physical layer of the first communication protocol that the link layer data is to be sent. The interface adapter uses a shift register to cause the link layer data to be passed to the physical layer according to the predefined delay.

    BIMODAL PHY FOR LOW LATENCY IN HIGH SPEED INTERCONNECTS

    公开(公告)号:US20210182231A1

    公开(公告)日:2021-06-17

    申请号:US17184737

    申请日:2021-02-25

    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.

    Bimodal PHY for low latency in high speed interconnects

    公开(公告)号:US10963415B2

    公开(公告)日:2021-03-30

    申请号:US16802209

    申请日:2020-02-26

    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.

    High speed interconnect with channel extension

    公开(公告)号:US10931329B2

    公开(公告)日:2021-02-23

    申请号:US15394278

    申请日:2016-12-29

    Abstract: An apparatus includes an agent to facilitate communication in one of two or more modes, where a first of the two or more modes involves communication over links including a first number of lanes and a second of the two or more modes involves communication over links including a second number of lanes, and the first number is greater than the second number. The apparatus further includes a memory including data to indicate which of the two or modes applies to a particular link and a multiplexer to reverse lane numbering on links including either the first number of lanes or the second number of lanes.

Patent Agency Ranking