Abstract:
The disclosure discloses a high-efficiency short training field sequence generation method, a signal sending method, a signal receiving method, and related apparatuses, where the high-efficiency short training sequence generation method includes: increasing frequency domain density of a frequency domain sequence corresponding to a first high-efficiency short training field sequence to generate a frequency domain sequence with increased frequency domain density; generating a second high-efficiency short training field sequence according to the frequency domain sequence with increased frequency domain density; and using the second high-efficiency short training field sequence as a high-efficiency short training field sequence in a preamble sequence of a data transmission frame in a wireless local area network WLAN. In embodiments of the disclosure, a cycle of a high-efficiency short training field sequence used for performing stage-2 AGC adjustment in the WLAN may be increased, and a maximum CSD value that can be used is further increased.
Abstract:
An electronically steerable antenna with dual polarization is provided, as well as a method for steering such an antenna. An example antenna may include a driven patch element having dual polarity for radiating or receiving a first beam with a first polarization and radiating or receiving a second beam with a second polarization. The antenna includes a parasitic patch element separated from the driven patch element and in a parasitic coupling arrangement to the driven patch element, as well as first and second tuning elements linked to the parasitic patch element to control first and second terminating impedances of the parasitic patch element, respectively. The first terminating impedance at least partly determines a direction of the first beam, and the second terminating impedance at least partly determines a direction of the second beam.
Abstract:
The disclosure discloses a high-efficiency short training field sequence generation method, a signal sending method, a signal receiving method, and related apparatuses, where the high-efficiency short training sequence generation method includes: increasing frequency domain density of a frequency domain sequence corresponding to a first high-efficiency short training field sequence to generate a frequency domain sequence with increased frequency domain density; generating a second high-efficiency short training field sequence according to the frequency domain sequence with increased frequency domain density; and using the second high-efficiency short training field sequence as a high-efficiency short training field sequence in a preamble sequence of a data transmission frame in a wireless local area network WLAN. In embodiments of the disclosure, a cycle of a high-efficiency short training field sequence used for performing stage-2 AGC adjustment in the WLAN may be increased, and a maximum CSD value that can be used is further increased.
Abstract:
Embodiments of the present disclosure provide an interleaving processing method and device in a WLAN system. The apparatus includes: a bit parsing unit, configured to allocate bits in a coded data stream to n sub resource block interleaving units according to a specific sequence, where n is a positive integer greater than 1, and a value of n is a quantity of resource blocks allocated to the user; and the sub resource block interleaving units, configured to perform discrete interleaving on input bits. According to the foregoing apparatus and method, system performance can be improved.
Abstract:
Embodiments of the present application provide a signal processing method and apparatus, and a device. The embodiments relate to an MU-MIMO system. The signal processing apparatus includes: a signal obtaining module and a sending module. A signal includes N spatial flows, and the signal includes a training field, where the training field includes a first part and a second part. Sub-carriers of an OFDM symbol in the second part of the training field are divided into N training sub-carrier sets TSSs in a division manner that is the same as a division manner of sub-carriers of an OFDM symbol in the first part of the training field, and each spatial flow corresponds to at least one sub-carrier in a TSS, in each frequency domain location, of each OFDM symbol in the second part of the training field. So that precision of the channel estimation is improved.
Abstract:
An electronically steerable antenna with dual polarization is provided, as well as a method for steering such an antenna. An example antenna may include a driven patch element having dual polarity for radiating or receiving a first beam with a first polarization and radiating or receiving a second beam with a second polarization. The antenna includes a parasitic patch element separated from the driven patch element and in a parasitic coupling arrangement to the driven patch element, as well as first and second tuning elements linked to the parasitic patch element to control first and second terminating impedances of the parasitic patch element, respectively. The first terminating impedance at least partly determines a direction of the first beam, and the second terminating impedance at least partly determines a direction of the second beam.
Abstract:
The disclosure discloses a high-efficiency short training field sequence generation method, a signal sending method, a signal receiving method, and related apparatuses, where the high-efficiency short training sequence generation method includes: increasing frequency domain density of a frequency domain sequence corresponding to a first high-efficiency short training field sequence to generate a frequency domain sequence with increased frequency domain density; generating a second high-efficiency short training field sequence according to the frequency domain sequence with increased frequency domain density; and using the second high-efficiency short training field sequence as a high-efficiency short training field sequence in a preamble sequence of a data transmission frame in a wireless local area network WLAN. In embodiments of the disclosure, a cycle of a high-efficiency short training field sequence used for performing stage-2 AGC adjustment in the WLAN may be increased, and a maximum CSD value that can be used is further increased.
Abstract:
Embodiments of the present application provide a signal processing method and apparatus, and a device. The embodiments relate to an MU-MIMO system. The signal processing apparatus includes: a signal obtaining module and a sending module. A signal includes N spatial flows, and the signal includes a training field, where the training field includes a first part and a second part. Sub-carriers of an OFDM symbol in the second part of the training field are divided into N training sub-carrier sets TSSs in a division manner that is the same as a division manner of sub-carriers of an OFDM symbol in the first part of the training field, and each spatial flow corresponds to at least one sub-carrier in a TSS, in each frequency domain location, of each OFDM symbol in the second part of the training field. So that precision of the channel estimation is improved.
Abstract:
A method includes: determining a maximum orthogonal frequency division multiplexing OFDM symbol quantity of a frequency band used for downlink transmission, where the maximum OFDM symbol quantity of the frequency band is a maximum value of maximum OFDM symbol quantities of all subbands of the frequency band; determining, according to a value relationship between a maximum OFDM symbol quantity of a subband to which user equipment belongs and the maximum OFDM symbol quantity of the frequency band, additional long training field instruction information used to instruct whether to send an additional long training field to the user equipment; and sending an indication message to the user equipment, where the indication message includes the additional long training field instruction information.
Abstract:
An electronically steerable antenna with dual polarization is provided, as well as a method for steering such an antenna. An example antenna may include a driven patch element having dual polarity for radiating or receiving a first beam with a first polarization and radiating or receiving a second beam with a second polarization. The antenna includes a parasitic patch element separated from the driven patch element and in a parasitic coupling arrangement to the driven patch element, as well as first and second tuning elements linked to the parasitic patch element to control first and second terminating impedances of the parasitic patch element, respectively. The first terminating impedance at least partly determines a direction of the first beam, and the second terminating impedance at least partly determines a direction of the second beam.