Abstract:
A heat dissipation apparatus includes a heat dissipation substrate, a heat dissipation component, and a plurality of heat dissipation fins disposed on a first side of the heat dissipation substrate. The heat dissipation fins are configured to dissipate heat on the heat dissipation substrate. A first surface of the heat dissipation component is fastened on a second side of the heat dissipation substrate. There is a gap between a side surface of the heat dissipation component and the heat dissipation substrate, and a second surface of the heat dissipation component is used to be attached to a first to-be-heat-dissipated component, to dissipate heat on the first to-be-heat-dissipated component. An area that is on the second side of the heat dissipation substrate is used to be attached to another to-be-heat-dissipated component. Heating power of the first to-be-heat-dissipated component is greater than heating power of the another to-be-heat-dissipated component.
Abstract:
The present disclosure provides a cabinet and a heat dissipation system. The cabinet includes: an operating compartment, disposed on one side of a heat dissipation substrate, where the operating compartment is configured to accommodate a server; and a heat dissipation compartment, disposed on the other side of the heat dissipation substrate. Both the heat dissipation compartment and the operating compartment share the heat dissipation substrate as a compartment wall. The operating compartment is separated from the heat dissipation compartment by using the heat dissipation substrate. The heat dissipation compartment accommodates multiple heat dissipation fins, and the multiple heat dissipation fins are connected to the heat dissipation substrate. An air intake vent is disposed in a first compartment wall of the heat dissipation compartment, and an air exhaust vent is disposed in a second compartment wall of the heat dissipation compartment disclosure.
Abstract:
A system, including a first pipeline and a second pipeline, where the first pipeline includes a first steam pipe, a first liquid pipe, and an evaporation section connected between the first steam pipe and the first liquid pipe, and the second pipeline includes a second steam pipe, a second liquid pipe, and a heat exchanger connected between the second steam pipe and the second liquid pipe. Two pairs of quick connectors are respectively connected between the first steam pipe and the second steam pipe and between the first liquid pipe and the second liquid pipe. The loop heat pipe includes a valve and a nozzle that are configured for vacuum pumping. Refrigerant is provided inside the loop heat pipe. A capillary structure is provided inside the evaporation section to provide a capillary suction force to enable the refrigerant to circulate in the loop heat pipe.
Abstract:
A heat dissipation apparatus includes a heat dissipation substrate, a heat dissipation component, and a plurality of heat dissipation fins disposed on a first side of the heat dissipation substrate. The heat dissipation fins are configured to dissipate heat on the heat dissipation substrate. A first surface of the heat dissipation component is fastened on a second side of the heat dissipation substrate. There is a gap between a side surface of the heat dissipation component and the heat dissipation substrate, and a second surface of the heat dissipation component is used to be attached to a first to-be-heat-dissipated component, to dissipate heat on the first to-be-heat-dissipated component. An area that is on the second side of the heat dissipation substrate is used to be attached to another to-be-heat-dissipated component. Heating power of the first to-be-heat-dissipated component is greater than heating power of the another to-be-heat-dissipated component.
Abstract:
An electronic device cover is configured to accommodate an electronic device. A first air intake window and a first air exhaust window are disposed on the electronic device cover. The first air intake window is configured to communicate with an air intake vent of the electronic device to form an air intake channel, and the first air exhaust window is configured to communicate with an air exhaust vent of the electronic device to form an air exhaust channel. An air return channel is disposed inside the electronic device, and the air return channel is configured to communicate the air exhaust channel and the air intake channel.
Abstract:
One example heat sink includes a heat dissipation substrate, a connector, and a fastener. The heat dissipation substrate is configured to dissipate heat for a packaged chip located on a circuit board, and the heat dissipation substrate is located on a surface that is of the packaged chip and that is opposite to the circuit board. A first heat dissipation substrate and a second heat dissipation substrate of the heat dissipation substrate each have a heat conduction surface that conducts heat with a chip in the packaged chip. Different heat conduction surfaces correspond to different chips.
Abstract:
The present invention discloses a thermally conductive composite sheet, including a first aluminum alloy layer, at least one graphite sheet, an aluminum alloy frame, and a second aluminum alloy layer, where the aluminum alloy frame is provided with at least one opening; the graphite sheet is positioned inside the opening of the aluminum alloy frame; the aluminum alloy frame and the graphite sheet are sandwiched between the first aluminum alloy layer and the second aluminum alloy layer; the first aluminum alloy layer is diffusion-bonded to the graphite sheet and the aluminum alloy frame; the second aluminum alloy layer is diffusion-bonded to the graphite sheet and the aluminum alloy frame; and the graphite sheet is cladded by the first aluminum alloy layer, the second aluminum alloy layer, and the aluminum alloy frame, to form a unity.
Abstract:
Embodiments of the present invention disclose an electronic equipment cooling system including: a cabinet; at least one electronic equipment chassis that is installed inside the cabinet; and an auxiliary cooling device including an air pressurizing device, an air supply plenum box, and an air-guiding device. The air supply plenum box is disposed on an inner side of the cabinet. The air pressurizing device is disposed at the top or bottom of the cabinet, and an air exhaust on a sidewall of the air pressurizing device is connected to a corresponding air intake on a sidewall of the air supply plenum box. The air-guiding device is installed inside the electronic equipment chassis, an air intake of the air-guiding device is connected to an air exhaust of the air supply plenum device, and an air exhaust of the air-guiding device faces a component inside the electronic equipment chassis.