Abstract:
A new multi-beam apparatus with a total FOV variable in size, orientation and incident angle, is proposed. The new apparatus provides more flexibility to speed the sample observation and enable more samples observable. More specifically, as a yield management tool to inspect and/or review defects on wafers/masks in semiconductor manufacturing industry, the new apparatus provide more possibilities to achieve a high throughput and detect more kinds of defects.
Abstract:
Systems and methods are provided for compensating dispersion of a beam separator in a single-beam or multi-beam apparatus. Embodiments of the present disclosure provide a dispersion device comprising an electrostatic deflector and a magnetic deflector configured to induce a beam dispersion set to cancel the dispersion generated by the beam separator. The combination of the electrostatic deflector and the magnetic deflector can be used to keep the deflection angle due to the dispersion device unchanged when the induced beam dispersion is changed to compensate for a change in the dispersion generated by the beam separator. In some embodiments, the deflection angle due to the dispersion device can be controlled to be zero and there is no change in primary beam axis due to the dispersion device.
Abstract:
A new multi-beam apparatus with a total FOV variable in size, orientation and incident angle, is proposed. The new apparatus provides more flexibility to speed the sample observation and enable more samples observable. More specifically, as a yield management tool to inspect and/or review defects on wafers/masks in semiconductor manufacturing industry, the new apparatus provide more possibilities to achieve a high throughput and detect more kinds of defects.
Abstract:
A new apparatus of plural charged particle beams with multi-axis magnetic lenses is provided, which comprises a plurality of sub-columns The apparatus employs two modified multi-axis magnetic lenses, and magnetic sub-lenses thereof therefore function as the objective lenses and the condenser lenses of all the sub-columns respectively. The plurality of sub-columns can perform the same function or different functions required for observing a surface of a specimen, such as high-throughput inspection and high-resolution review of interested features thereon. Accordingly, the apparatus can be used as a yield management tool in semiconductor manufacturing industry.
Abstract:
An apparatus of plural charged particle beams with multi-axis magnetic lens is provided to perform multi-functions of observing a specimen surface, such as high-throughput inspection and high-resolution review of interested features thereof and charge-up control for enhancing image contrast and image resolution. In the apparatus, two or more sub-columns are formed and each of the sub-columns performs one of the multi-functions. Basically the sub-columns take normal illumination to get high image resolutions, but one or more may take oblique illuminations to get high image contrasts.