Abstract:
An array substrate and a method of manufacturing the same, and a display device are disclosed. The array substrate includes a base substrate; a pixel electrode, a thin film transistor, a gate line and a data line that are provided on the base substrate; and an electrostatic shielding layer provided on the base substrate. The electrostatic shielding layer is configured for electrostatic protection during production of the array substrate.
Abstract:
There is provided a display substrate, a method of manufacturing a display substrate, and a display device. The display substrate includes a base substrate, a conductive layer on the base substrate, and a protective layer on the conductive layer. The protective layer includes a plurality of fillers disposed in one layer. The filler includes an outer wall and a plurality of nanoscale filling particles enclosed by the outer wall.
Abstract:
A display substrate includes a base substrate; a black matrix on the base substrate and in the black matrix region, the black matrix comprising a plurality of rows and a plurality of columns intersecting each other; a first color filter layer having a net structure with a plurality of openings, and comprising a first portion in the first region and a second portion in the black matrix region, the first color filter layer substantially covering the plurality of columns of the black matrix; a second color filter layer in the second region; and a third color filter layer in the third region. A first height of a surface of the first portion away from the base substrate relative to the base substrate and a second height of a surface of the second portion away from the base substrate relative to the base substrate are within 30% of each other.
Abstract:
A liquid crystal display panel, a liquid crystal display device and a control method thereof are disclosed. The liquid crystal display panel includes a first base substrate, a second base substrate, and a liquid crystal layer provided between the first base substrate and the second base substrate. It further includes: a first electrode and a second electrode, the first electrode and the second electrode being both provided on one side of one of the first base substrate and the second base substrate close to the liquid crystal layer; the first electrode and the second electrode being configured for generating an electric field; and a conductor, located between the first electrode and the second electrode and is configured for generating a magnetic field whose magnetic field direction is perpendicular to a plane of the first base substrate and a plane of the second base substrate.
Abstract:
The present disclosure provides a method for manufacturing a display substrate, a display substrate, and a display device. The method for manufacturing a display substrate comprises: providing a container, which is positioned horizontally and which contains a curable liquid, and the bottom of which is flat; immersing a side of the substrate parallel to the bottom of the container in the horizontal direction into the curable liquid; and performing curing treatment of the curable liquid until the curable liquid is solidified on the side of the substrate to form a film layer.
Abstract:
The present invention provides an array substrate and a manufacturing method thereof, and a display panel comprising said array substrate. The array substrate comprises a plurality of pixel units, each of which comprising: a gate formed on a substrate; a gate insulating layer formed on the gate; an active layer being corresponding to the gate and formed on the gate insulating layer; a source and a drain formed on the active layer respectively; a pixel electrode formed on the gate insulating layer and electrically connected to the drain; a passivation layer covering the source, the drain and the pixel electrode; and a common electrode being corresponding to the pixel electrode and formed on the passivation layer, wherein an opening passing through the passivation layer is formed in the common electrode, so as to expose the pixel electrode below the passivation layer.
Abstract:
An array substrate and a method of manufacturing the same, and a display device are disclosed. The array substrate includes a base substrate; a pixel electrode, a thin film transistor, a gate line and a data line that are provided on the base substrate; and an electrostatic shielding layer provided on the base substrate. The electrostatic shielding layer is configured for electrostatic protection during production of the array substrate.
Abstract:
Provided are a color filter substrate provided with an inorganic cover layer and a display panel including the same. The color filter (CF) substrate includes a base substrate; a black matrix and a pixel resin layer both formed on the base substrate; a planarization layer formed on the black matrix and the pixel resin layer; and an inorganic cover layer formed on the planarization layer.
Abstract:
A display panel and a manufacturing method thereof and a display device. The display panel includes a first substrate and a second substrate disposed opposite to the first substrate. The display panel further includes: a sealant disposed in an auxiliary region of the first substrate; and a first spacer disposed in an auxiliary region of the second substrate. A position of the first spacer in the auxiliary region of the second substrate corresponds to a position of the sealant in the auxiliary region of the first substrate.
Abstract:
Embodiments of the present invention disclose a display substrate and a method of manufacturing the same, and a display device comprising the display substrate. The display substrate comprises: a substrate; a black matrix layer and a color filter layer located on the substrate; and at least one main spacer and at least one secondary spacer located on the black matrix layer or the color filter layer and both having direct projections on the substrate within a region where the black matrix layer is located. A sum of thicknesses of portions of the black matrix layer and the color filter layer corresponding to each secondary spacer is smaller than that of portions of the black matrix layer and the color filter layer corresponding to each main spacer, so that a distance from a top end of the secondary spacer to the substrate is smaller than a distance from a top end of the main spacer to the substrate. As a result, a difference between the distance from the top end of the main spacer to the substrate and the distance from the top end of the secondary spacer to the substrate can be varied by adjusting a difference between the sum of thicknesses of the black matrix layer and the color filter layer directly below each main spacer and the sum of thicknesses of the black matrix layer and the color filter layer directly below each secondary spacer, thereby enabling the main spacer and the secondary spacer to provide a good effect of buffering an external force.