Abstract:
A method is provided for characterizing manufacturing variations in a camera and imperfections in its operating environment to allow images captured by the camera to be compensated for these defects. In one embodiment, a method for characterizing a camera includes: (a) illuminating a field of view of the optical elements under a controlled condition; (b) exposing multiple images onto the image sensor under the controlled condition; (c) extracting parameter values of a model for the image provided on the image sensor from the multiple images; and (d) compensating images taken subsequently in the camera using the parameter values. The objects in the field of view may have a predetermined color, contrast or pattern. In one instance, the controlled condition includes an external light source for illuminating the field of view, and the image sensor is sensitive to a plurality of color components. The field of view may be illuminated at a predetermined light intensity for each of the color components. The camera may include an archival memory for storing the images taken. Alternatively, the camera may include a transmitter for sending images taken to an external depository. The camera may also be associated with an identification, and the transmitter sends the images together with the identification to identify the images sent.
Abstract:
Systems and methods are provided for compensating motion fluctuation and luminance in video data from a capsule camera system. The capsule camera system moves through the GI tract under the action of peristalsis and records images of the intestinal walls. The gut itself contracts and expands but exhibits little net movement. The capsule's movement is episodic and jerky. It typically pitches, rolls, and yaws. Its average motion is forward, but it also moves backward and from side to side along the way. Luminance fluctuation and other luminance artifacts also exist in the captured capsule video. Motion and luminance compensation for the capsule video will improve the visual quality of the compensated video.
Abstract:
An optical spectral filtering device and associated method for selectively directing a portion of a wavelength multiplexed input signal, entering through an optical fiber, into one or more output signals provided to one or more optical fibers and/or electronic outputs. The optical filtering is accomplished using free-space diffractive wavelength demultiplexing optics combined with a fixed (permanent) patterned structure located in the spectrally dispersed image plane. The structure can block or direct a selected spectral portion of the optical signal to one or more separate outputs, such as an optical fiber or power detector. A single active element in the optical path is used to spatially shift, or steer, the entire input spectrum at the dispersed spectral image plane, to control the portion of the input spectrum illuminating specific features on the permanent patterned structure.
Abstract:
An optical amplification method which includes a spectral filtering method for selecting one of several pre-recorded spectral filter patterns and applies this filter to the spectral distribution of a multi-wavelength optical signal transmitted from an input to an output fiber. Optical filtering may be accomplished using free-space bulk optical diffractive wavelength demultiplexing, combined with a fixed (permanent) spatial pattern located in the spectrally dispersed image plane, to transfer to the optical output fiber the input signal with its spectrum selectively attenuated.
Abstract:
A capsule camera apparatus includes a swallowable housing, a light source within the housing, a camera within the housing for capturing a first digital image and a second digital image of a view of the camera illuminated by the light source, a a motion detector that detects a motion of the housing the first digital image and the second digital image, and a motion evaluator that selects a disposition of the second digital image, based on a metric on the motion. The disposition may include writing the second image into an archival storage or providing the second digital image to the outside by a wireless communication link.
Abstract:
An apparatus for coupling radiation of individual laser diode emitters into a common optical fiber is disclosed. The radiation is collimated along fast axis and combined by using crossed pairs of flat mirrors. The combined beams are collimated by a common slow axis collimating lens. The laser diode emitters are disposed on both sides of an optical axis of the slow axis collimating lens such that the optical path lengths from the emitters to the slow axis collimating lens are equal.
Abstract:
A swallowable capsule with a camera and a memory for imaging the colon. Standard semiconductor memory (memories made of standard memories processes or processes modified from standard process by adopting comprehensible silicon planar technology process steps) is used. This is made possible by the use of an optimal type of image compression that can be performed with limited processing power and limited memory (e.g., without requiring a full size frame buffer). Also, controls on the number of images taken are used in one embodiment.
Abstract:
A capsule camera apparatus includes a swallowable housing, a light source within the housing, a camera within the housing for capturing a first digital image and a second digital image of a view of the camera illuminated by the light source, a a motion detector that detects a motion of the housing using the first digital image and the second digital image, and a motion evaluator that selects a disposition of the second digital image, based on a metric on the motion. The disposition may include writing the second image into an archival storage or providing the second digital image to the outside by a wireless communication link.