Abstract:
A laser device includes at least one amplification unit configured to amplify laser light emitted from a laser oscillator, and an amplification control unit configured to control the amplification unit. The amplification unit includes an incident-side optical adjustment unit including a wavefront adjustment unit configured to adjust a wavefront of the laser light and a first direction adjustment unit configured to adjust an optical axis thereof, an amplifier configured to amplify the laser light, an emission-side optical adjustment unit including a second direction adjustment unit configured to adjust an optical axis of the laser light, and a measurement unit configured to measure the laser light and acquire information on at least one of an optical axis, a wavefront and energy of the laser light. The amplification control unit controls the incident-side optical adjustment unit and/or the emission-side optical adjustment unit, based on a measurement result of the measurement unit.
Abstract:
There is provided a slab amplifier including an optical system (48, 51) provided in a chamber (47) to allow a seed beam having entered from a first window into the space between a pair of electrodes (42, 43) to be repeatedly reflected between the space so that the seed beam is amplified to be an amplified beam; a first aperture plate (61) provided between the first window and the electrodes, and having an opening of a dimension equal to or greater than a cross-section of the seed beam and equal to or smaller than a dimension of the first window; and a second aperture plate (62) provided between the second window and the electrodes, and having an opening of a dimension equal to or greater than a cross-section of the amplified beam and equal to or smaller than a dimension of the second window.
Abstract:
An extreme ultraviolet light generation apparatus includes a first light source outputting first excitation light, a laser oscillator including an active medium and performing laser oscillation by irradiating the active medium with the first excitation light to output the laser light, a measurement instrument measuring a pulse energy and a pulse time width of the laser light, a temperature regulator that adjusts a temperature of a cooling medium that cools the first light source, and a processor. The processor controls the temperature regulator to adjust the temperature of the cooling medium so that the pulse energy measured by the measurement instrument falls within a target range of the pulse energy, and adjust a current value of a current supplied to the first light source so that the pulse time width measured by the measurement instrument falls within a target range of the pulse time width.
Abstract:
There is provided a laser unit that may include a master oscillator, a laser amplifier, and an adjuster. The master oscillator may be configured to output a laser light beam. The laser amplifier may be disposed in a light path of the laser light beam outputted from the master oscillator. The adjuster may be disposed in the light path of the laser light beam, and may be configured to adjust a beam cross-sectional shape of the laser light beam amplified by the laser amplifier to be a substantially circular shape. The beam cross-sectional shape may be at a beam waist of the laser light beam or in the vicinity of the beam waist of the laser light beam, and may be in a plane orthogonal to a light path axis.
Abstract:
There may be provided a laser amplifier including: a chamber containing a laser medium; a first window provided on the chamber, and configured to allow a laser light beam inputted from outside of the chamber to enter the chamber; an excitation unit configured to amplify, by exciting the laser medium, the laser light beam that has entered the chamber; a second window provided on the chamber, and configured to allow the laser light beam that has been amplified by the excitation unit to exit from the chamber to the outside; a mirror provided on a laser light path between the first window and the second window; and a wavelength selection film provided on one or more of the first window, the second window, and the mirror, and configured to suppress propagation of light beams of one or more suppression target wavelengths different from a desired wavelength.
Abstract:
There is provided a laser unit that may include: a master oscillator configured to output a linear-polarized laser light beam; a first polarization device disposed in a light path of the linear-polarized laser light beam and provided with a polarization axis substantially aligned with a polarization direction of the linearly-polarized incident laser light beam; a second polarization device disposed in the light path of the linear-polarized laser light beam and provided with a polarization axis substantially aligned with a direction of the polarization axis of the first polarization device; and a laser amplifier disposed between the first polarization device and the second polarization device in the light path of the linear-polarized laser light beam and including a pair of discharge electrodes disposed to oppose each other, an opposing direction of the pair of discharge electrodes being substantially aligned with the direction of the polarization axis of the first polarization device.
Abstract:
A regenerative amplifier according to one aspect of this disclosure is used in combination with a laser device, and the regenerative amplifier may include: a pair of resonator mirrors constituting an optical resonator; a slab amplifier provided between the pair of the resonator mirrors for amplifying a laser beam with a predetermined wavelength outputted from the laser device; and an optical system disposed to configure a multipass optical path along which the laser beam is reciprocated inside the slab amplifier, the optical system transferring an optical image of the laser beam at a first position as an optical image of the laser beam at a second position.
Abstract:
An extreme ultraviolet light source apparatus using a spectrum purity filter capable of obtaining EUV light with high spectrum purity. The apparatus includes a chamber; a target supply unit for supplying a target material; a driver laser using a laser gas containing a carbon dioxide gas as a laser medium, for applying a laser beam to the target material to generate plasma; a collector mirror for collecting and outputting the extreme ultraviolet light radiated from the plasma; and a spectrum purity filter provided in an optical path of the extreme ultraviolet light, for transmitting the extreme ultraviolet light and reflecting the laser beam, the spectrum purity filter including a mesh having electrical conductivity and formed with an arrangement of apertures having a pitch not larger than a half of a shortest wavelength of the laser beam applied by the driver laser.