Abstract:
A laser apparatus may include a laser oscillator capable of tuning a spectral bandwidth of a laser beam to be outputted therefrom, a spectrum detecting unit that detects a spectrum of the laser beam outputted from the laser oscillator and an attenuation unit capable of regulating light intensity of the laser beam that enters the spectrum detecting unit. The attenuation unit may include a variable attenuator whose transmittance varies depending on an incident position of the laser beam and a movement mechanism that moves the variable attenuator so that the incident position of the laser beam is changed.
Abstract:
A laser apparatus may include a first laser resonator configured to generate a laser beam, a first optical element configured to adjust a divergence in a first direction of the laser beam, a second optical element configured to adjust a divergence in a second direction of the laser beam, a measuring unit configured to measure the divergence in the first direction and the divergence in the second direction of the laser beam, and a controller configured to control one or both of the first optical element and the second optical element based on the divergence in the first direction and the divergence in the second direction of the laser beam both measured by the measuring unit.
Abstract:
There may be provided a laser unit including a display configured to display one or both of electric power consumed by the laser unit and electric energy consumed by the laser unit.
Abstract:
The laser system may include a first laser apparatus configured to emit a first pulse laser beam, a second laser apparatus configured to emit a second pulse laser beam, a timing detector, and a controller. The timing detector may be configured to detect a first passage timing at which the first pulse laser beam passes a first position and a second passage timing at which the second pulse laser beam passes a second position. The controller may be configured to control a first trigger timing for the first laser apparatus to emit the first pulse laser beam and a second trigger timing for the second laser apparatus to emit the second pulse laser beam based on the first passage timing and the second passage timing.
Abstract:
A laser apparatus may comprise: a laser chamber configured to include a laser gain medium; a pair of electrodes disposed in the laser chamber; an energy detector configured to measure pulse energy of laser beams outputted by discharging between the pair of the electrodes; an optical element disposed on a light path of the laser beams; and a controller configured to calculate an integration value of absorption energy at the optical element, and determine whether the integration value exceeds a lifetime integration value of the optical element based on the pulse energy of the laser beams.
Abstract:
A two-beam interference apparatus may include a wafer stage on which a wafer may be set, a beam splitter to split first laser light into second and third laser light having a beam intensity distribution elongated in a first direction within a surface of the wafer, and an optical system to guide the second and third laser light onto the wafer. The wafer is irradiated with the second laser light from a second direction perpendicular to the first direction, and the third laser light from a third direction perpendicular to the first direction but different from the second direction, to thereby cause interference of the second and third laser light on the wafer. This apparatus increases the accuracy of the two-beam interference exposure.