Abstract:
A method of forming micro channels in a thermal barrier coating includes placing a brazing tape on a substrate. The brazing tape has a first side and a second side with a plurality of ceramic members attached thereto. The first side is placed in contact with the substrate. A brazing step brazes the brazing tape to the substrate. An applying step applies a bond coat to the second side of the brazing tape. Another applying step applies a thermal barrier coating (TBC) onto the bond coat. A removing step removes the plurality of ceramic members by exposing the plurality of ceramic members to a ceramic solvent. A plurality of micro channels are formed in the thermal barrier coating by voids left from the plurality of ceramic members.
Abstract:
A thermal management article, a method for forming a thermal management article and a thermal management method are disclosed. Forming a thermal management article includes forming a duct adapted to be inserted into a groove on the surface of a substrate, and attaching the duct to the groove so that the top outer surface of the duct is substantially flush with the surface of the substrate. Thermal management of a substrate includes transporting a fluid through the duct of a thermal management article to alter the temperature of the substrate.
Abstract:
Methods for finishing a component include providing the component comprising one or more interior surfaces fluidly connected to one or more exterior surfaces, providing a plurality of magnetic particles, and applying a magnetic field so as to repeatedly move the magnetic particles against the interior surfaces and exterior surfaces of the component.
Abstract:
A welding process, welding system and welded article are disclosed. The welding process includes directing energy from one or more fusion beams to join a first element to a second element and to join the first element to a third element. The directing of the energy is at a first lateral angle and a second lateral angle with respect to the first element. The welding system includes an energy emitting device, a first fusion beam and a second fusion beam. The first fusion beam and the second fusion beam are oriented to extend diagonally through an article. The laser welded article includes the first element joined to the second element, and the first element joined to the third element. A fillet weld is formed in a first inaccessible portion between the first element and the second element and a second inaccessible portion between the first element and the third element.
Abstract:
A brazing method is disclosed. The brazing method includes providing a substrate, providing at least one groove in the substrate, providing a support member, positioning the support member over the at least one groove in the substrate, providing a braze material, applying the braze material over the support member to form an assembly, and heating the assembly to braze the braze material to the substrate. Another brazing method includes providing a preform, providing a wire mesh, pressing the wire mesh into the preform, heating the preform to form a braze material including the wire mesh, providing a substrate, providing at least one groove in the substrate, applying the braze material over the at least one groove in the substrate, then brazing the braze material to the substrate.
Abstract:
Compositions, and articles and methods for forming articles which include said compositions, are disclosed. The compositions include, by weight percent, about 13.7% to about 14.3% chromium (Cr), about 9.0% to about 9.9% cobalt (Co), about 4.0% to about 5.25% aluminum (Al), about 0.5% to about 3.0% titanium (Ti), about 4.5% to about 5.0% tungsten (W), about 1.4% to about 1.7% molybdenum (Mo), about 3.25% to about 3.75% niobium (Nb), about 0.08% to about 0.12% carbon (C), about 0.005% to about 0.04% zirconium (Zr), about 0.010% to about 0.014% boron (B), and balance nickel (Ni) and incidental impurities.
Abstract:
A method for repairing a part and the resulting is disclosed. The method includes positioning a plug having an inner braze element coupled thereto into a cavity defined by an internal surface of a component. The cavity has a circular cross-section at the external surface of the component. The plug completely fills the circular cross-section and the inner braze element is within the cavity. A braze paste is positioned at least partially around the plug at the external surface. The component is positioned such that the inner braze element is above the plug. The component is subjected to a thermal cycle to melt the inner braze element around the plug, completely sealing the cavity by forming a metallurgical bond with the plug and the internal surface of the component. During the thermal cycle the braze paste is melted to form a metallurgical bond with the plug and external surface.
Abstract:
A closure element for an internal passage in a component, and a related method and turbine blade or nozzle are disclosed. The closure element includes a spherical body made of a first superalloy, and a plurality of extensions extending from a surface of the spherical body. The plurality of extensions made of the same, similar or different material other than the first superalloy. Subjecting the component to at least one thermal cycle causes a braze material to form a metallurgical bond with the spherical body, the plurality of extensions and the passage wall to seal the internal passage.
Abstract:
A hybrid article is disclosed including a sintered coating disposed on and circumscribing the lateral surface of a core having a core material and a greater density than the sintered coating. The sintered coating includes more than about 95% up to about 99.5% of a first metallic particulate material including a first melting point, and from about 0.5% up to about 5% of a second metallic particulate material having a second melting point lower than the first melting point. A method for forming the hybrid article is disclosed including disposing the core in a die, introducing a slurry having the metallic particulate materials into a gap between the lateral surface and the die, and sintering the slurry. A method for welding a workpiece is disclosed including the hybrid article serving as a weld filler.
Abstract:
Hybrid welding methods include directing a laser beam from a laser onto a first component that is vertically offset from a second component, and, directing a weld arc from an arc welder onto a weld joint between the first component and the second component to weld the first and second components together.